АВТОМОДЕЛЬНЫЙ РЕЖИМ ВОЗБУЖДЕНИЯ ЛИНИИ РОСТА ОДИНОЧНОГО ДЕНДРИТА

Шабловский О.Н., Кроль Д.Г.

Гомельский государственный технический университет имени П.О. Сухого, Гомель, Республика Беларусь, *shablovsky-on@yandex.ru*

Введение. Теоретические и экспериментальные задачи высокоскоростной кристаллизации чистых веществ обусловлены разработкой перспективных технологий получения материалов в неравновесных тепловых условиях. Современные экспериментальные установки позволяют переохлаждать расплавы до 300 К , [1]. В этих условиях были получены высокие (20 – 70 м/с) скорости роста кристалла. Дендритный режим роста наблюдается при глубоких переохлаждениях ΔT расплава: например, для никеля при $\Delta T > 57$ К , для меди при $\Delta T > 90$ К. Состояние исследований этой фундаментальной проблемы изложено в [1-7].

Цель работы: изучить автомодельный режим роста одиночного дендрита в переохлажденном расплаве чистого вещества.

Автомодельная линия роста. Рассмотрим двухмерную плоскую фазовую границу кристаллизации (ФГК) x - F(y,t) = 0. Уравнение роста дендрита имеет вид [8]:

$$\frac{1}{\varphi} \frac{\partial^2 F}{\partial y^2} = \mu B G^{3-\delta} + \frac{\partial F}{\partial t} \left[1 + \left(\frac{\partial F}{\partial y} \right)^2 \right], \qquad G = \left[1 + \left(\frac{\partial F}{\partial y} \right)^2 \right]^{1/2}, \tag{1}$$

где координата x направлена вдоль оси симметрии дендрита в сторону твердой фазы; y - поперечная декартова координата. Кинетическая связь $|N| = \mu(T_e - T_j)$, $T_e = T_c[1 - (UK/L)]$ определяет нормальный механизм роста из расплава; здесь μ - кинетический коэффициент; T_e - температура равновесия между твердой и жидкой фазами; T_c - равновесная температура кристаллизации; U - поверхностная энергия границы раздела фаз; L - теплота фазового перехода единицы объема вещества; ; $\varphi = \alpha/\mu$; $\alpha = L/(UT_e)$; $K = (\partial^2 F/\partial^2 y)/G^3$ - средняя

кривизна ФГК; $B = T_c - T_j (y = 0)$ - переохлаждение на вершине дендрита; δ - параметр неоднородности переохлаждения ФГК по отношению к угловой координате θ ; θ - угол между нормалью линии роста и осью x, т.е. $\partial F/\partial y = \tan\theta$; угол заострения лини роста равен $\theta_1 = (\pi/2) - \theta$. Расплав находится в однородном отрелаксировавшем состоянии. ФГК перемещается справа налево со скоростью N < 0. Другие подробности изложены в наших предшествующих публикациях [8-12].

Далее рассматриваем автомодельный случай

$$F(y,t) = A_1 t + A_2(\zeta), \ \zeta = y - mt, \ A_1, \ m - \text{const}, \ A_1 < 0, \ \delta \in (0,1].$$
 (2)

При $\delta = 1$ уравнение роста (1) можно записать в виде

$$\frac{dA}{d\zeta} = (\alpha B + \varphi A_1 - m\varphi A)(1 + A^2), \quad \frac{dA_2(\zeta)}{d\zeta} = A(\zeta). \tag{3}$$

Выражение (2) означает, что плоская фазовая граница $x = A_1 t$ перемещается влево с постоянной скоростью $A_1 < 0$ и испытывает конечное автомодельное возмущение $A_2(\zeta)$. Волна $\zeta = 0$, y = mt распространяется по однородному нулевому фону: $A(\zeta = 0) = 0$. На основе (3) проанализированы два волновых режима возмущения, при которых кривизна положительная, K > 0: 1) волна y = mt, $t \ge 0$ идет вверх, на периферию, удаляясь от оси симметрии дендрита, m > 0, $0 \le A < (\mu_1 B_1)/m$, $\mu_1 B_1 = \mu B + A_1 > 0$; 2) волна $y = mt + y_0$, $y_0 > 0$ идет вниз, с периферии к вершине, m < 0, $A \ge 0$. Процесс длится конечное время t_1 , в течение которого волна достигает оси симметрии $mt + y_0 = 0$.

Обсудим знак производной $dN/dA = (\partial N/\partial t)/(\partial A/\partial t)$, которая характеризует корреляцию между знаком $\partial N/\partial t$ (ускоренное либо замедленное движение) и знаком $\partial A/\partial t$ [dA>0, $d\theta_1<0$ — заострение либо dA<0, $d\theta_1>0$ — затупление линии роста. Из (3) следует, что знак dN/dA противоположен знаку выражения $(m+A_1A)$. Знак dK/dA противоположен знаку выражения $(m+A_1A)$.

Пусть m>0. Режим dN/dA<0, при котором торможение $\left[N<0, dN>0\right]$ сопровождается затуплением $\left[d\theta_1>0\right]$ либо ускоренное движение $\left[N<0, dN<0\right]$ сопровождается заострением $\left[d\theta_1<0\right]$, существует при $m^2<\left(-A_1\right)\!\mu_1 B_1$,

 $0 < A < [m/(-A_1)]$. Режим (dN/dA) > 0, при котором наблюдается корреляция «торможение — заострение» $[N < 0, dN > 0, d\theta_1 < 0]$ либо корреляция «ускорение — затупление» $[N < 0, dN < 0, d\theta_1 > 0]$, существует тоже при $m^2 < (-A_1)\mu_1 B_1$, но здесь другой интервал значений $A : [m/(-A_1)] < A < (\mu_1 B_1/m)$.

Вывод: при m>0, $m^2<(-A_1)\mu_1B_1$ существует пороговое значение $A=m/(-A_1)$. Слева от порога имеем корреляции «торможение / ускорение – затупление / заострение». Справа от порога: «торможение / ускорение – заострение / затупление»; эти два режима эволюции линии роста наблюдались в экспериментах [13] при изучении кристаллизации льда в переохлажденной воде. При всех m>0 поведение кривизны определяется неравенством (dK/dA)<0.

Пусть m < 0. Единственно возможный режим (dN/dA) > 0 существует при $0 \le A < (A_1/m)$, т.е. угол заострения θ_1 не является слишком малым, и реализуются экспериментально наблюдавшиеся корреляции «ускорение — затупление», «торможение — заострение».

Бегущая волна возбуждения линии роста. Автомодельная линия роста (2), согласно (1), определяется следующими выражениями для скорости и кривизны:

$$N = \frac{A_1 - mA}{\left(1 + A^2\right)^{1/2}}, K = \frac{\varphi}{\left(1 + A^2\right)^{1/2}} \left[A_1 - mA + \mu B \left(1 + A^2\right)^{(1-\delta)/2} \right]; \delta > 0, A \ge 0.$$

Оценка параметров задачи основана на неравенствах N<0, K>0, определяющих регулярный режим роста: $mA-A_1>0$; $\mu_1B_1>mA$, $0<\delta<1$.

При m>0, когда волна $\zeta=0$ бежит вверх, условие N<0 выполнено, а условие K>0 дает ограничение на угол заострения: $0< A<(\mu_1B_1/m)$. Напомним, что здесь $A=\operatorname{tg}\theta=\operatorname{ctg}\theta_1$. При m<0, когда волна $\zeta=0$ бежит вниз, условие K>0 выполнено, а неравенство N<0 означает, что $0< A<(A_1/m)$. Именно для таких углов заострения существует автомодельный режим возбуждения линии роста. Для $\delta\in(0,1)$ анализ знака dN/dA дает такие же оценки параметров, как при $\delta=1$ для m>0 и m<0.

Числовые расчеты при $\delta \in (0,1)$ проведены для никеля при следующих

значениях теплофизических параметров $T_c=1728\,\mathrm{K}\,, T_*=1562\,\mathrm{K}\,,$ $L=2,14\cdot10^9\,\mathrm{Дж/m^3}\,, c=5,62\cdot10^6\,\mathrm{Дж/(m^3\cdot K)}\,, \lambda=69\,\mathrm{Bt/(m\cdot K)}\,, U=1,81\,\mathrm{Дж/m^2}\,,$ $\gamma=1,3804\cdot10^{-7}\,\mathrm{c}\,, \mu=9,53\,\mathrm{m/(K\cdot c)}\,, N_b=5,3\,\mathrm{m/c}\,, \Delta T=166\,\mathrm{K}\,, B=1\,\mathrm{K}\,.$ Все расчеты выполнены в безразмерных величинах. Соответствие между безразмерными и размерными параметрами выглядит так: $A_1\to (A_1t_b/y_b)=(-N_bt_b/y_b)\,;$ безразмерная скорость m волны определена в долях основной скорости $(-A_1)\,.$ Индексом b отмечены масштабы величин, применяемые при обезразмеривании: $t_b=10^{-7}\,\mathrm{c}\,, y_b=10^{-6}\,\mathrm{m}\,.$

Рис. 1. Автомодельная линия роста: влияние угла заострения на скорость и кривизну фазовой границы. Входные параметры: $N_b = 5.3 \,\mathrm{m/c}, \; \mu = 9,53 \,\mathrm{m/(K \cdot c)}$

Результаты расчетов представлены на рисунках 1-3. На рисунку 1 даны типичные примеры поведения линии роста. Для волны бегущей вверх отчетливо

прослеживается корреляция $m \leftrightarrow (-N)$, а именно: чем больше m > 0, тем больше модуль скорости (-N) фазовой границы; производная $\partial N/\partial A$ - знакопеременная. Если же волна возмущения бежит вниз, m < 0, то $\partial N(A,m)/\partial A$ не меняет свой знак, а производная $\partial K(A,m)/\partial A$ - знакопеременная. Закономерности поведения скорости N(A,m) и кривизны K(A,m) как функций угла заострения и скорости волны возмущения, даны на рисунках 2 и 3: представленные здесь изолинии позволяют получить не только качественную, но и количественную информацию о влиянии A и m на свойства линии роста дендрита.

Рис. 2. Автомодельная линия роста: свойства скорости фазовой границы, $\delta = 0.5$. Нижняя часть рисунка: слева - изолинии $N(A,m) = \mathrm{const}$, справа – изолинии $[\partial N(A,m)/\partial A] = \mathrm{const}$.

Отметим еще, что была получена (график не приводится) зависимость скорости волны $m=m_*(A)$ вдоль линии нулевой кривизны K(A,m)=0: при малых положительных значениях A эта функция резко убывает и при A>2 меняется слабо.

Рис. 3. Автомодельная линия роста: свойства кривизны фазовой границы, $\delta = 0.5$. Нижняя часть рисунка: слева изолинии $K(A,m) = \mathrm{const}$, справа — изолинии $[\partial K(A,m)/\partial A] = \mathrm{const}$.

Заключение. Дано аналитическое описание автомодельного режима эволюции линии роста, когда волна возбуждения идет вверх, на периферию дендрита либо вниз – с периферии к вершине. Получены оценки параметров задачи, при которых наблюдаются режимы роста «торможение – заострение» и «ускорение – затупление». В ходе численных расчетов для переохлажденного расплава чистого никеля определены важные качественные и количественные закономерности влияния скорости бегущей волны возбуждения на кривизну и скорость фазовой границы кристаллизации.

Список литературы

1. Herlach, D. M. Metastable Solids from Undercooled Melts / D. M. Herlach, P. Galenko, D. Holland-Moritz. – Oxford: Pergamon, 2007. – 448 p.

- 2. Dragnevski, K. Experimental evidence for dendrite tip splitting in deeply undercooled, ultrahigh purity Cu / K. Dragnevski, R. F. Cochrane, A.M. Mullis // Physical review letters. 2002. Vol. 89. № 21. P. 215502-1 215502-4.
- 3. Bassler, B. T. The solidification velocity of pure nickel / B. T. Bassler, W. H. Hofmeister, R. J. Bayuzik // Materials Science and Engineering. 2003. A. 342. P. 80–92.
- 4. Mullis, A. M. A study of kinetically limited dendritic growth at high undercooling using phase-field techniques / A. M. Mullis // Acta Materialia. 2003. Vol. 51, № 7. P. 1959–1969.
- 5. Gliksman, M. E. Cappilary-mediated interface perturbations: Deterministic pattern
- formation / M. E. Gliksman // Journal of Crystal Growth. 2016. Vol. 450. P. 119–139.
- Strickland, J. On Directional Dendritic Growth and Primary Spacing A Review /
 Strickland, B. Nenchev // Crystals. 2020. 10(7). P. 627.
- 7. Kurz, W. Progress in modeling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018 / W. Kurz, M. Rappaz, R. Trivedi //Int. Mater. Rev. 2020. P. 1-47.
- 8. Шабловский, О.Н. Морфологические свойства линии роста двумерного дендрита в переохлажденном расплаве / О.Н. Шабловский // Прикладная физика. -2012. N = 4. C. 40 = 46.
- 9. Шабловский, O.H. Кинетика роста вершины дендрита в глубоко Часть 1. Уравнение переохлажденном расплаве. фазовой границы кристаллизации / О.Н. Шабловский // Успехи прикладной физики. – 2013. –Т. 1. $- N_{2}6. - C. 680-685.$
- 10. Шабловский, О.Н. Кинетика роста вершины дендрита в глубоко переохлажденном расплаве. Часть II. Аналитическая структура возмущений линии роста / О.Н. Шабловский // Успехи прикладной физики. 2014. –Т. 2. №1. С. 12-17.

- 11. Шабловский, О.Н. Форма поверхности роста и предвестники ветвления дендрита в переохлажденном расплаве / О.Н. Шабловский, Д.Г. Кроль // Успехи прикладной физики. 2018. №4. С. 316-324.
- 12. Шабловский, О.Н. Динамика неустойчивости волновых возмущений и боковое ветвление дендрита в переохлажденном расплаве / О.Н. Шабловский, Д.Г. Кроль // Успехи прикладной физики. 2022. №2. С. 189-202.
- 13. Шибков, А.А. Связь нестационарного роста вершины дендрита с образованием боковых ветвей / А.А. Шибков, А.А. Леонов, А.А. Казаков, С.С. Столбенников // Материаловедение. 2005. № 7. С. 2-9.