Доклады Академии Наук СССР 1939. том XXIV, № 7

ФИЗИКА

П. А. БАЖУЛИН и Ю. М. МЕРСОН

поглощение ультраакустических воли в смеси ацетон—вода

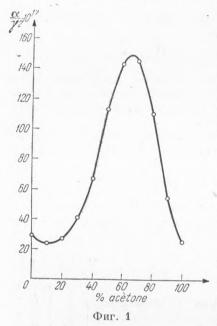
(Представлено академиком Л. И. Мандельштамом 29 VI 1939)

В настоящей заметке приводятся предварительные результаты измерений поглощения ультраакустических волн системой ацетон—вода в зависимости от частоты и концентрации. Интервал частот, в котором велось исследование, равен от 19 000 до 3800 kHz.

В основу метода измерений было положено известное явление диффракции света на ультраакустических волнах. Подробное описание метода

дано в работе Π . А. Бажулина(1).

В табл. 1 приведены результаты измерений коэффициента поглощения α системой ацетон—вода в зависимости от частоты и концентрации. При этом α обозначает коэффициент поглощения для амплитуды в см⁻¹. Концентрация смеси указана объемная (отношение объема одной из компонент ко всему объему смеси). Температура во время работы изменялась от 16.5 до 19.5°.


Таблица 1

Содержание ацетона в воде (в %)	38000 kHz		29500 kHz		26000 kHz		19000 kHz		среднее	вычис- и <i>t°</i> =23°
	α	$\alpha/\nu^2 \cdot 10^{17}$	α	$a/v^2 \cdot 10^{17}$	α	$\alpha/\nu^2 \cdot 10^{17}$	a	α/γ ² ·10 ¹⁷	$\frac{\alpha}{\sqrt{2}}$ · 1017 c	а'. 1017 ві лена при
0 10 20 30 40 50 60 70 80 90	0.42 0.37 0.38 0.59 0.99 0.42 	29 26 26 41 69 98 — — 52 24	0.25 0.20 0.23 0.38 0.58 1.03 1.22 1.19 0.89 0.51 0.23	29 23 26 44 67 118 140 137 102 59 26	0.19 0.16 0.19 0.26 0.44 0.89 1.01 0.96 0.69 0.34 0.17	28 24 28 39 65 132 149 142 202 50 25	 0.25 0.37 0.51 0.56 0.45	69 103 141 155 125	29 24 27 41 67 113 143 145 110 54 25	7.1 7.6 8.2 8.9 9.8 10.4 9.3

На фиг. 1 дана зависимость $\frac{\alpha}{\sqrt{2}}$ от концентрации; $\frac{\alpha}{\sqrt{2}}$ взято как среднее из всех измерений для данной концентрации. Как видно из табл. 1, зависимость α от частоты, повидимому, подчиняется квадратичному закону, хотя для некоторых концентраций и имеются отклонения, но они не носят систематического характера и, надо полагать, являются случайными.

Ив табл. 1 и фиг. 1 видно, что для данной смеси коэффициент абсорбции для всех частот имеет резко выраженный максимум в области 60-70% содержания ацетона; $\frac{\alpha}{\sqrt{2}}$ для данной концентрации увеличивается примерно в 6 раз по отношению к нашим компонентам. Незначительные понижения α в области малых концентраций ацетона хотя и являются систематическими для всех исследованных частот, но делать из этого пока какиелибо заключения преждевременно, поскольку данные отклонения находятся в пределах ошибок измерений.

Интересно отметить, что сопоставдяя экспериментальные результаты с вычисленными по формуле Стокса и учитывая только обычный коэффи-

циент вязкости, мы точно также имеем максимум в области 60-70% содержания ацетона.

Нами также были проведены измерения зависимости поглощения от температуры для смеси в 70% содержания ацетона в интервале 20—38°. Измерения показали, что коэффициент абсорбции с повышением температуры падает. Измерения для более высоких температур были затруднены наличием тепловых потоков.

Заметим, что зависимость поглощения от концентрации для таких систем как бензол — толуол, CCl_4 — эфир и других (¹), (²), где α для одной компоненты значительно больше, чем для другой, показывает резкое убывание коэффициента поглощения с концентрацией. Однако в нашей смеси ацетон—вода коэффициенты абсорбции для одной и другой компонент примерно одинаковы, зависимость же от концентрации получается с сильно выраженным максимумом.

Некоторые другие экспериментальные факты указывают, что данная система имеет точно также резко выраженный максимум в ходе зависимости от концентрации ряда других ее свойств. Так, измерения П. Прозорова показали, что скорость ультразвука имеет максимум около 30%-го содержания ацетона в воде. Вязкость смеси также имеет максимум при концентрации около 40% ацетона. Интересно заметить, что рентгенографические исследования показывают, что данная система является неоднородной(3), т. е. в малых областях имеет место неравномерное распределение концентраций молекул. Кроме того эти же исследования показывают, что характер неоднородностей зависит от концентрации смеси.

Последнее обстоятельство дает возможность предполагать, что в нашей системе может иметь место дополнительное поглощение за счет релаксационного эффекта на этих неоднородностях.

Физический институт им. П. Н. Лебедева Академия Наук СССР Москва Поступило 5 VII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. Бажулин, ЖЭТФ, 8, 457 (1938). ² Claeys, I. Errera a. H. Sack, Trans. Faraday Soc., **33**, 136 (1937). ³ Н. Мохов, Научные записки ДГУ, **1**, 101, Днепропетровск (1938).