УДК 517.9

ШАБЛОВСКИЙ Олег Никифорович, доктор физико-математических наук, профессор, заведующий кафедрой технической механики Гомельского государственного технического университета имени П.О. Сухого. Автор более 250 научных работ, в т. ч. 3 монографий **КРОЛЬ Дмитрий Григорьевич**, кандидат физико-математических наук, доцент кафедры технической механики Гомельского государственного технического университета имени П.О. Сухого. Автор более 50 научных публикаций

ГИСТЕРЕЗИС И ЭНТРОПИЯ ПРИ ВОЗБУЖДЕНИИ КОЛЕБАНИЙ В СРЕДЕ С ИСТОЧНИКОМ СИНУС-ГОРДОНА

Представлены результаты исследования волнового теплопереноса на основе уравнения синус-Гордона в поле внешнего периодического источника. Выполнен анализ градиентных свойств температуры в зависимости от величины частотного параметра системы. Изучено влияние частоты возбуждающих колебаний на динамический гистерезис и производство энтропии за счет энергообмена с внешней средой. Получены трехмерные фазовые портреты колебаний в системе «среда – источник энергии». Проведено сравнение с обычным уравнением синус-Гордона.

Ключевые слова: теплоперенос; источник энергии; гистерезис; производство энтропии; нелинейные колебания.

Введение. Одной из эффективных моделей теплопереноса, учитывающей конечную скорость распространения тепла, является гиперболическое уравнение теплопроводности

$$c\left(\frac{\partial T}{\partial t} + \gamma \frac{\partial^2 T}{\partial t^2}\right) = \lambda \frac{\partial^2 T}{\partial x^2} + q_v \tag{1}$$

где T – температура; c – объемная теплоемкость; λ – коэффициент теплопроводности; γ – время релаксации теплового потока; t – время; x – декартова координата; $q_v(T,t)$ – мощность внутренних источников энергии. Это уравнение выводится из вариационных принципов и имеет обоснование [1] с позиций теории переноса. Явная зависимость функВолновое уравнение теплопереноса с объемным источником энергии хорошо известно в математической физике. Оно описывает процессы, в которых волновой механизм переноса тепла преобладает над диффузионным ($\gamma \partial/\partial t >> 1$):

$$\frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial \alpha^2} = k_v(T, t)$$

ции источника от времени характерна для реономных (параметрических) теплофизических систем. Современное состояние теории локально-неравновесного теплопереноса в нелинейных средах и подробная библиография этой проблемы даны в [2, 3].

[©] Шабловский О.Н, Кроль Д.Г., 2012

$$\alpha = x / w, \quad w^2 = \lambda / (c\gamma) \equiv \text{const}, \quad k_v = q_v / (c\gamma),$$
(2)

где *w* – скорость распространения тепловых возмущений. Среди уравнений вида (2) важное место занимает уравнение синус-Гордона с постоянными коэффициентами, которое детально изучено в теории нелинейных эволюционных уравнений. Если $k_v(T) = \pm \sin T$, то (2) принимает вид:

$$\frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial \alpha^2} = \pm \sin T \tag{3}$$

Результаты исследования одного реономного варианта уравнения синус-Гордона в поле внешней периодической силы с затуханием

$$\frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial \alpha^2} + \sin T = \Gamma \cos(\omega t) - \varepsilon \frac{\partial T}{\partial t},$$

$$\varepsilon \cdot \omega \cdot \Gamma = \operatorname{const}$$

представлены в [4].

В данной работе мы изучаем два примера реономных зависимостей $k_v(T,t)$, которые позволяют преобразовать решения волнового уравнения (2) к известным решениям [5] уравнения синус-Гордона (3). Прикладные аспекты проведенного исследования связаны с проблемой возникновения нелинейных колебаний и периодических структур при взрывной кристаллизации аморфных пленок, напыленных на подложку [6–8]. Все расчеты выполнены в безразмерных переменных. При обезразмеривании применяем масштабы величин, для которых размерные и безразмерные уравнения имеют одинаковую форму записи.

Целью работы является изучение градиентных, гистерезисных и энтропийных свойств теплового поля в среде, на которую действуют два источника энергии: 1) нелинейный по температуре источник типа синус-Гордона; 2) внешний периодический во времени источник вынужденных колебаний.

Динамический гистерезис. Поведение реономной системы «среда – источник энергии» описывается формулами:

$$T - T_0 \equiv \tau(\alpha, t) = \theta(\alpha, t) - f(t),$$

$$f(t) = f_1 \sin(k_1 t), T_0, f_1, k_1 - \text{const},$$

$$k_v(T, t) = \sin[\tau + f(t)] + k_1^2 f(t), \qquad (4)$$

где $T_0 > 0$; k_1 – частота возбуждающих колебаний; функция $\theta(\alpha, t)$ определяется известным решением [5]:

$$\theta = -4 \arctan\left[\frac{m}{\sqrt{1-m^2}} \cdot \frac{\sin\left(\alpha\sqrt{1-m^2} + C_2\right)}{\cosh(mt+C_1)}\right],$$

$$m, C_1, C_2 - \operatorname{const}_{, 0} < m < 1, t \ge 0.$$

Для дальнейшего важно, что здесь $\theta(\alpha, t)$ – непериодическая функция аргумента t. Если $C_1 > 0$, то $ch(mt + C_1)$ – монотонно возрастающая функция; если $C_1 < 0$, то $ch(mt + C_1)$ немонотонная функция, она имеет минимум при $mt_1 + C_1 = 0$; при $t > t_1 > 0$ эта функция монотонно растет. Имеем $k_{y}(T,t) = 0$, если $\sin \theta = -k_1^2 f(t), \ \tau = -f + \pi n_0 + (-1)^{n_0} \arcsin(-k_1^2 f).$ Выбор целого числа $n_0 = 0, 1, 2, ...$ влияет на интервал температур, в котором изучается решение. Для определенности работаем с тремя корнями $\tau_1^-, \tau_2^+, \tau_3^-$ уравнения $k_v(T,t) = 0$. Здесь верхние индексы ± указывают знак производной $\partial k_{v} / \partial \tau$ при соответствующей температуре. В расчетах в качестве τ_1^- и τ_3^- берем два соседних корня, примыкающих слева и справа к τ_2^+ , где τ_2^+ – самый близкий к нулю корень уравнения $k_v(\tau_2^+, t) = 0$, для которого $\partial k_v(\tau, t) / \partial \tau > 0$, причем $\tau_1^- < \tau_2^+ < \tau_3^-$. Вычислительная процедура состоит в следующем. Работаем на интервале времени, равном одному периоду колебаний функции f(t): $t \in [0, 2\pi / k_1]$. Для каждого фиксированного t строим изотермы τ_1^- и $\tau_3^ \bar{\tau}_1^- = \bar{\theta}_1 - f; \quad \bar{\tau}_3^- = \bar{\theta}_3 - f; \quad S_1(\alpha, t) = \tan(-\bar{\theta}_1 / 4),$ $S_3(\alpha, t) = \tan(-\theta_3 / 4)$. Из двух последних формул находим значения α_1, α_3 , т. е. координаты *x*₁, *x*₃ которым в изучаемый момент времени t соответствуют температуры τ_1^-, τ_3^- . Совокупность точек $(t, x_1(t))$ и $(t, x_3(t))$ дает возможность построить вдоль каждой изотермы зависимости $N^{2}(t)$, $g^{2}(t)$, а затем найти связь $N^{2} = N^{2}(g^{2})$, где $N = (-\partial T / \partial t)/(\partial T / \partial x) -$ скорость перемещения изотермы; $g = \partial T / \partial x$ – градиент температуры; $S = tan(-\theta/4)$. В основной серии расчетов были зафиксированы величины m = 0,999; $C_2 = 2$; варьируемые параметры: частота k_1 и константа C_1 . Величина C_1 влияет на амплитуду колебаний по α функции $S(\alpha, t = 0)$, характеризующей температурную неоднородность среды в начальный момент времени. В тех случаях, когда на плоскости (g^2, N^2) динамический гистерезис отсутствует, функция $N^{2} = N^{2}(g^{2})$ – монотонно убывающая; график этой зависимости похож на обычную гиперболу. Наличие гистерезиса, наблюдаемого при сравнении двух нестационарных состояний τ_1^- и τ_3^- , для которых $\partial k_v(T,t) / \partial T < 0$, связано в первую очередь с алгебраической величиной константы С1. В таблице представлены левая

и правая границы интервала $C_1 \in [C_1^{(1)}, C_1^{(2)}]$, в котором динамический гистерезис на плоскости (g^2, N^2) существует. В этих случаях петли гистерезиса – незамкнутые линии, для которых отдельным значениям g^2 могут соответствовать два или три значения N^2 .

Из числовых данных в таблице следует, что рост частоты возбуждающих колебаний в значительной степени увеличивает ширину гистерезисного интервала $\Delta C_1 = C_1^{(2)} - C_1^{(1)}$. Например (см. первую и последнюю строки в таблице), при увеличении k_1 в 3,89 раза ΔC_1 увеличивается в 12,75 раз. Для обработки данных в таблице (всего было получено 16 строк) применяем относительные величины $\delta k_1 = (k_1)_l / (k_1)_1$, $\delta(\Delta C_1) = (\Delta C_1)_l / (\Delta C_1)_1$, где l = 1, 2, ..., 16 – номер строки. Первая и последняя строки в приведенной здесь таблице соответствуют номерам l = 1 и l = 16. В резуль-

ВЛИЯНИЕ ЧАСТОТЫ ВОЗБУЖДАЮЩИХ КОЛЕБАНИЙ НА ШИРИНУ ГИСТЕРЕЗИСНОГО ИНТЕРВАЛА

k_1	δk_1	$C_1^{(1)}$	$C_1^{(2)}$	ΔC_1
1,80	1,00	-3,7	-3,3	0,40
2,00	1,11	-3,7	-2,6	1,10
2,25	1,25	-3,7	-1,9	1,80
2,50	1,39	-3,7	-1,4	2,30
2,75	1,53	-3,7	-0,85	2,85
3,00	1,67	-3,7	-0,5	3,20
3,25	1,81	-3,6	-0,1	3,50
3,50	1,94	-3,6	0,1	3,70
3,60	2,00	-3,6	0,2	3,80
3,70	2,06	-3,6	0,3	3,90
3,80	2,11	-3,6	0,4	4,00
3,80	2,11	-3,6	0,4	4,00
4,00	2,22	-3,6	0,5	4,10
5,00	2,78	-3,5	0,8	4,30
6,00	3,33	-3,5	1,2	4,70
7,00	3,89	-3,5	1,6	5,10

тате получили аппроксимирующий полином $\delta(\Delta C_1) = -21,63 + 32,58 \cdot \delta k_1 - 11,015 \cdot (\delta k_1)^2 +$

$$+1,264 \cdot (\delta k_1)^3$$

Таким образом, реономный источник энергии (4) обладает принципиальными отличиями от своего стационарного аналога (3), а именно: на изотермах τ_1^- , τ_3^- , $\partial k_v / \partial \tau < 0$, наблюдается динамический гистерезис, который обладает сильной чувствительностью к частоте возбуждающих колебаний.

Производство энтропии. Поведение реономной системы «среда – источник энергии» описывается формулами:

$$T - T_0 \equiv \tau(\alpha, t) = \theta(\alpha, t) - f(t),$$

$$f(t) = f_1 \sin(k_1 t), T_0, f_1, k_1 - \text{const},$$

$$k_v(T, t) = -\sin[\tau + f(t)] + k_1^2 f(t)$$
(6)

Функция $\theta(\alpha, t)$ определяется известным решением [5]:

$$\theta = -4 \arctan\left[\frac{m}{\sqrt{1-m^2}} \cdot \frac{\sin\left(t\sqrt{1-m^2} + C_2\right)}{\cosh(m\alpha + C_1)}\right], (7)$$
$$m, C_1, C_2 - \operatorname{const}_0 < m^2 < 1, t \ge 0$$

Отличия от источника (4) следующие: 1) изменился знак перед $\sin \theta$ [сравни (4) и (6)]; 2) функция $\theta(\alpha, t)$ в (7) теперь является периодической по времени. Таким образом, формула (5) для температуры содержит своеобразную комбинацию колебаний с двумя частотами k₁ и $\omega = \sqrt{1 - m^2}$. Здесь k_1 – частота возбуждающих колебаний, ω – «собственная» частота.

Производство энтропии подсчитываем по формуле [2]

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_e + \boldsymbol{\sigma}_i, \quad \boldsymbol{\sigma}_e = \frac{q_v}{T} \left[1 + \gamma \frac{\boldsymbol{\sigma}_i}{c} \right], \quad \boldsymbol{\sigma}_i = q^2 / (\lambda T^2),$$

где σ_e – производство энтропии за счет энергообмена с внешней средой; σ_i – производство энтропии за счет внутренних необратимых процессов. В рамках модели (2) волнового теплопереноса удельный тепловой поток *q* подсчитываем двумя способами:

1) численное интегрирование закона Максвелла [2]

$$q + \gamma \frac{\partial q}{\partial t} = -\lambda \frac{\partial T}{\partial x}, \qquad (8)$$

2) аналитическое решение уравнения $\gamma \frac{\partial q}{\partial t} = -\lambda \frac{\partial T}{\partial x}$, которое следует из (8) при

 $\gamma \partial/\partial t >> 1$

В результате имеем:

$$q(\alpha,t) = -4 \frac{\lambda m \operatorname{sh}(m\alpha + C_1)}{\gamma \operatorname{wch}(m\alpha + C_1)} J(\alpha,t) + q(\alpha,t=0) \ ;(9)$$

$$J = \frac{-m}{(1-m^2)2AB\operatorname{ch}(m\alpha + C_1)} \ln \left| \frac{(A+Bz)(A-Bz_0)}{(A-Bz)(A+Bz_0)} \right|,$$
$$J(\alpha, t=0) = 0.$$
$$A = (1+B^2)^{1/2} > 0, \quad B = \left[\frac{m^2}{(1-m^2)\operatorname{ch}^2(m\alpha + C_1)} \right]^{1/2} > 0,$$
$$z = \cos(t\sqrt{1-m^2} + C_2), \quad z_0 = \cos C_2.$$

Расчет разнообразных вариантов показал, что в установившемся по времени режиме колебаний формула (9) дает результаты, качественно полностью соответствующие закону Максвелла релаксационного теплопереноса. Количественные различия совсем небольшие и не имеют принципиального значения.

Градиентные свойства теплового поля изучаем в трехмерном пространстве (T_t, T_{α}, T) , где каждая из трех функций подсчитывается при фиксированном α и при $t \ge 0$. Приняты обозначения: $T_t = \partial T / \partial t$, $T_{\alpha} = \partial T / \partial \alpha$. В структуре решения (5), (7) важная роль принадлежит точке нулевого градиента температуры (НГТ): $\alpha = \alpha_* = -C_1 / m$, $T_{\alpha} = 0$. Фазовые портреты в точках $\alpha_* \pm \alpha$, равноудаленных от точки НГТ, одинаковы. Основным параметром задачи является отношение частот $h = \omega / k_1$.

Пусть h – целое число. Фазовые портреты при h = 1; 2; 3 даны на рисунке 1. Для каждого варианта траектория есть замкнутая линия.

Шабловский О.Н., Кроль Д.Г. Гистерезис и энтропия при возбуждении колебаний...

Случай h=1 – самый простой (*puc. la*). Важно то, что при равенстве частот ($\omega = k_1$) качественное поведение системы с возбуждающим источником [$f_1 \neq 0$] ничем не отличается от ситуации, которая описывается обычным уравнением синус-Гордона [$f_1 = 0$]. Для других целых h траектория по-прежнему замкнутая, но число витков увеличивается (*puc. l6, le*). Такое же поведение траекторий наблюдается для рацио-

нальных нецелых h; расчеты были выполнены при h = 1/3; 1/2; 5/2.

Во всех изученных вариантах траектории располагаются на цилиндрической поверхности, прямолинейная образующая которой перпендикулярна оси T_{α} , т. е. параллельна плоскости (T_t, T) . Ориентация образующей цилиндра в пространстве (T_t, T_{α}, T) зависит от входных параметров. На *рис. 2a, 26* показаны примеры

Рис. 2.

поперечных сечений (направляющих линий) таких цилиндров, где β – угол, измеренный в плоскости (T_t , T) между образующей цилиндра и осью T. Во всех точках НГТ цилиндры вырождаются в плоскость $T_{\alpha} = 0$, на которой располагаются фазовые траектории.

Пусть h – иррациональное число. В этом случае траектории по-прежнему располагаются на цилиндрической поверхности, но линии эти незамкнутые и занимают на цилиндре конечную область ленточного вида (*рис. 3*). При нелинейной суперпозиции двух колебательных процессов (5), (7) на фазовом портрете появляются резкие изгибы (повороты) траектории. Такие повороты типичны для областей с сильной пространственно-временной неоднородностью поля и связаны с переменой знаков производных T_t, T_{α} . Изгибы «ленты» зрительно воспринимаются как острые кромки *рис. 3б*. Два «иррациональных» примера поперечных сечений цилиндра даны на *рис.* 2*в*, 2*г*. Гистерезисная зависимость между температурой T(t)и производством энтропии $\sigma(t)$ при фиксированном α показана на *рис.* 4. Для *h* целого зависимость $\sigma = \sigma(T)$ образует одну или несколько замкнутых петель динамического гистерезиса (*рис.* 4*a*). Для *h* – иррационального с течением времени формируется характерная «сетка», которая занимает конечную область на плоскости (T, σ), *рис.* 4*б*. Процессы возбуждения колебаний, для которых частотный параметр $h = \omega / k_1$ – трансцендентное число [были рассмотрены значения $h = \pi$; *e*; ln 2; $2^{\sqrt{2}}$ и др.] не содержат принципиально новых конфигураций (T_t, T_{α}, T) и (T, σ).

Заключение. Анализ двух простых точных решений позволил обнаружить существенные различия между реономным и склерономным (обычным) уравнениями синус-Гордона. Взаимодействие нелинейного по температуре ис-

Шабловский О.Н., Кроль Д.Г. Гистерезис и энтропия при возбуждении колебаний...

точника типа синус-Гордона и нестационарного периодического по времени источника энергии существенным образом зависит от отношения «собственной» и возбуждающей частот колебаний. Установлено, что фазовые траектории располагаются на цилиндрической поверхности, поперечное сечение которой может иметь нетривиальную геометрическую форму. Зависимость производства энтропии от температуры имеет гистерезисный характер и обладает сильной чувствительностью к отношению частот. Детально изучена трехмерная конфигурация фазовых траекторий для целой, дробной, рациональной, иррациональной и трансцендентной величин частотного параметра системы.

Список литературы

1. *Никитенко Н.И*. Проблемы радиационной теории тепло- и массопереноса в твердых и жидких средах // ИФЖ. 2000. Т. 73. № 4. С. 851–859.

2. Жоу Д., Касас-Баскес Х., Лебон Дж. Расширенная необратимая термодинамика. М.; Ижевск, 2006.

3. Шабловский О.Н. Релаксационный теплоперенос в нелинейных средах. Гомель, 2003.

4. Табор М. Хаос и интегрируемость в нелинейной динамике. М., 2001.

5. Лэм Дж. Л. Введение в теорию солитонов. М., 1983.

6. *Grigoropoulos C.* Explosive Crystallization in the Presence of Melting / C. Grigoropoulos et. al. // Physical Review B. 2006. Vol. 73. P. 184125-1-184125-15.

7. Shablovsky O.N. A Thermal Model of Periodic Crystallization // Crystallography Reports. 2005. Vol. 50. № 1. P. 62–67.

8. Шабловский О.Н., Кроль Д.Г. Феноменологическая оценка времени тепловой релаксации при взрывной кристаллизации аморфных пленок германия // Тепловые процессы в технике. 2010. № 5. С. 203–208.

Shablovsky Oleg Nikiforovich

P. O. Sukhoi State Technical University of Gomel,

Krol Dmitry Grigoryevich

P. O. Sukhoi State Technical University of Gomel

HYSTERESIS AND ENTROPY OF OSCILLATIONS INDUCED IN A MEDIUM WITH SINE-GORDON SOURCE

The article presents the results of the study of sine-Gordon equation in the field of external periodic source. The influence of the frequency of inducing oscillations on the dynamical hysteresis and entropy production has been studied. Three-dimensional phase portraits of oscillations in the system "medium – energy source" have been obtained.

ФИЗИКА. МАТЕМАТИКА. ИНФОРМАТИКА

Key words: heat transfer, energy source, hysteresis, entropy production, nonlinear oscillations.

Контактная информация: Шабловский Олег Никифорович: e-mail: shabl@gstu.by, shablovsky-on@yandex.by Кроль Дмитрий Григорьевич e-mail: shabl@gstu.by, kr-dmitry@yandex.ru

Рецензент – *Андреев П.Д.*, кандидат физико-математических наук, доцент кафедры информационной безопасности института математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносова