УДК 535.37

Г.Е.Малашкевич¹, П.П.Першукевич¹, А.Г.Малашкевич¹, Е.Б.Дунина², А.А.Корниенко², Е.Н.Подденежный³, А.А.Бойко³

«КРАСНЫЕ» ОПТИЧЕСКИЕ ЦЕНТРЫ УЛЬТРАДИСПЕРСНОГО И НАНОКЕРАМИЧЕСКОГО У₃Аl₅O₁₂:Ce³⁺

¹Институт физики имени Б.И. Степанова, проспект Независимости, 68, 220072 Минск, Беларусь g.malashkevich@ifanbel.bas-net.by ²Витебский государственный технологический университет, 210035 Витебск, Беларусь ³Гомельский государственный технический университет имени П.О.Сухого, проспект Октября, 48, 246746 Гомель, Беларусь

Появление высокоэффективных светодиодов на основе кристалла InGaN, излучающего при $\lambda \sim 450$ нм, стимулировало исследования по созданию люминофоров, позволяющих трансформировать это излучение в длинноволновую область с целью получения результирующего квазибелого света. Наиболее подходящими люминофорами для таких светодиодов считаются активированные ионами Ce³⁺ соединения со структурой граната, люминесцирующие в широкой полосе при $\lambda \sim 550$ нм [1]. Однако, несмотря на продолжительный период исследования подобных люминофоров, «спектроскопический потенциал» даже такой классической матрицы как активированный ионами Ce³⁺ иттрий-алюминиевый гранат (Y₃Al₅O₁₂), по нашему мнению, изучен недостаточно. Поэтому целью настоящей работы являлся поиск новых оптических центров в матрице иттрий-алюминиевого граната и определение их спектрально-люминесцентных характеристик.

Для получения опытных образцов $Y_3Al_5O_{12}:Ce^{3+}$ использовались наноразмерные порошки оксидов Y_2O_3 и Al_2O_3 , а также $Ce(NO_3)_3$ и некоторые легирующие и связующие добавки. Все реактивы имели квалификацию пе хуже XЧ. Сиптез осуществлялся при температуре $T \approx 1500^{\circ}C$. Фазовый анализ полученных образцов показал, что они характеризуется полным отсутствием аморфной фракции, а наблюдающиеся бреговские рефлексы хорошо соответствуют иттрий-алюминиевому гранату пространственной группы *Ia3d* кубической сингонии при наличии незначительной примеси орторомбического иттрий-алюминиевого перовскита (YAIO₃).

На рис. 1 приведены «квантовые» спектры люминесценции нанокерамического образца $Y_3Al_5O_{12}$:Се³⁺ при различных длинах волн возбуждения λ_{exc} . Видно, что при T = 298К и $\lambda_{exc} = 460$ нм спектр (кривая *l*, *a*) представляет собой слабоструктурную широкую полосу с максимумом при $\lambda \approx 570$ нм, на длинноволновом краю которой в районе $\lambda \sim 700$ нм имеется ряд достаточно интенсивных и относительно узких полос. При $\lambda_{exc} = 400$ нм наблюдается перераспределение относительной интенсивности узких полос и практически полное исчезновение указанной широкой полосы (кривая *2*, *a*). С увеличением λ_{exc} до 590 (кривая *3*, *b*)

и 620 нм (кривая 4, b) относительная интенсивность узких полос также существенно перераспределяется, причем в обоих случаях они располагаются на широком слабоструктурном пьедестале. Снижение T до 77К при $\lambda_{exc} = 590$ нм сопровождается значительным понижением этого пьедестала и многократным ослаблением полос с максимумами при $\lambda = 678$ и 694 нм (кривая 5, b). Примечательно, что интенсивность последней значительно ослабляется с увеличением длительности УФ-облучения образца. При рассмотренных условиях возбуждения наблюдается также группа очень слабых узких полос в области 800–950 нм (кривая 6, c), интенсивности которых изменяются симбатно с интенсивностями узких полос при $\lambda = 688$ и 707 нм. Подобные спектры люминесценции наблюдаются и для порошковых люминофоров.

Рис. 1. Спектры люминесценции $Y_3Al_5O_{12}$: Ce³⁺ при λ_{exe} (нм): 400 (2), 460 (1, 6), 590 (3, 5), 620 (4). $\Delta\lambda_{exe} = 4$ нм, $\Delta\lambda_{rec} = 6E$. *T* (K): 298 (1–4) и 77 (5, 6).

На рис. 2 приведены «квантовые» спектры возбуждения люминесценции рассматриваемого образца $Y_3Al_5O_{12}:Ce^{3+}$ при T = 298K и длинах волн регистрации λ_{rec} , соответствующих максимумам наиболее интенсивных узких полос люминесценции. Здесь же

для сравнения изображен спектр этого же образца при $\lambda_{rec} = 600$ нм (кривая 1). Видно, что приведенные спектры условно разбиваются на две группы, характеризующиеся наибольшим подобием в видимой области спектра. В первую входят спектры, полученные при $\lambda_{rec} = 688$ (кривая 2) и 707 нм (кривая 3), во вторую – при $\lambda_{rec} = 694$ (кривая 4), 725 (кривая 5) и 750 нм (кривая 6). Причем спектры последней группы существенно различаются в УФ-области.

Рис. 2. Спектры возбуждения люминесценции $Y_3Al_5O_{12}$:Ce³⁺. λ_{rec} (нм): 610 (1), 688 (2), 707 (3), 694 (4), 725 (5) и 750 (6). $\Delta\lambda_{rec} = \Delta\lambda_{exc} = 2$ нм. T = 298 К.

Приведенная на рис. 1 широкая полоса люминесценции (кривая *1*) является типичной для межконфигурационных переходов ионов Ce³⁺ в матрице иттрий-алюминиевого граната. Интерпретация же «красных» оптических центров, характеризующихся узкими спектральными полосами (см. кривые 2–6), представляется неоднозначной. С одной стороны, наличие в спектре двух групп узких полос, интенсивности которых изменяются симбатно, а энергетический интервал между ними находится в пределах расщепления, допустимого для ${}^{2}F_{j}$ мультиплетов Ce³⁺, даёт основания приписать коротковолновую группу переходам с нижнего уровня $4f^{0}5d^{1}$ -оболочки данного активатора в состояние ${}^{2}F_{5/2}$, а длинноволновую – в состояние ${}^{2}F_{7/2}$. В пользу такой ситуации свидетельствует и удовлетворительное совпадение, по крайней мере, для одного из типов центров теоретических и наблюдаемых в эксперименте положений энергетических состояний $4f^{0}5d^{1}$ -оболочки Ce³⁺ в предположении, что оптические центры имеют ромбическую симметрию, см. таблицу. Однако в этом случае следует предположить

<i>E</i> , см ⁻¹	
Эксперимент	Теория
35085	34796
29268	29535
25541	25220
21517	21779
16949	16950

Таблица. Энергии *E* уровней 4*f*⁰ 5*d*¹-оболочки Ce³⁺ в кристаллическом поле Y₃Al₅O₁₂

наличие в их спектре люминесценции чисто электронных переходов, причина которых остаётся неясной. С другой стороны, наличие фотонестабильной узкой полосы при $\lambda \approx 694$ нм указывает на возможную связь этой полосы, а значит и остальных полос, с собственными дефектами матрицы, изначально существующими в ней либо возникающими при внедрении редкоземельного иона. В то же время в литературе нам не встречались сообщения о подобной узкополосной люминесценции собственных дефектов как $Y_3Al_5O_{12}$, так и $YAlO_3$ – в описанных случаях такие дефекты характеризуются широкими полосами люминесценции при $\lambda \approx 300$ нм (для граната [2]) и $\lambda \approx 600$ и 670 нм (для перовскита [3]). К сожалению, попытка получить $Y_3Al_5O_{12}$:La³⁺, свободный от ионов церия, окончилась безуспешно – во всех случаях, когда наблюдалась узкополосная люминесценция, эти ионы обнаруживались в образце на уровне примеси. По-видимому, дать ответ о природе обнаруженных «красных» центров поможет исследование кинетических характеристик люминесценции.

В иттрий-алюминиевом гранате, активированном ионами Ce^{3+} , обнаружено формирование оптических центров, характеризующихся двумя группами узких спектральных полос люминесценции: интенсивных в области 660< λ <780 нм и едва заметных в области 800< λ <950 нм. Рассмотрены две возможные причины их появления: оптические переходы Ce^{3+} в центрах ромбической симметрии и люминесценция дефектов матрицы.

Литература

- Бадгутдинов М.Л., Коробов Е.В., Лукьянов Ф.А., Юнович А.Э., Коган Л.М., Гальчина Н.А., Рассохин И.Т., Сощин Н.П. Спектры люминесценции, эффективность и цветовые характеристики светодиодов белого свечения на основе *p*-*n*-гетероструктур InGaN/GaN, покрытых люминофорами // ФТТ. –2006. –Т. 40, №6. –С. 758–763.
- 2. Wong C.M., Rotman S.R., Warde C. Optical studies of cerium doped yttrium aluminium garnet single crystals // Appl. Phys. Lett. -1984. -V. 44, No. 11. -P. 1038-1040.
- Коржик М.В. Физика сцинтилляторов на основе кислородных монокристаллов: БГУ. –Минск, 2003.