Е.Н. Подденежный. 1 , А.А.Бойко 1 , Е.И Гришкова. 1 , Г.Е. Малашкевич 2

НАНОСТРУКТУРИРОВАННЫЕ ПОРОШКИ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА КАК ПРЕКУРСОРЫ ЛЮМИНОФОРОВ И ПОЛИКРИСТАЛЛИЧЕСКИХ ЛАЗЕРНЫХ СРЕД

¹Гомельский государственный технический университет им.П.О.Сухого ,проспект Октября,48,246746 Гомель, Беларусь, podd@gstu.gomel.by

²Институт физики им Б.И.Степанова НАНБ, проспект Независимости,68, 220072 Минск, Беларусь

Поликристаллические материалы на основе гранатов перспективны в качестве активных лазерных сред, в том числе для квантовых генераторов фемтосекундного диапазона, а также для формирования эффективных люминофоров, преобразующих излучение голубых светоизлучающих диодов в белый свет со спектром, близким к солнечному [1,2]. Методы получения ультрадисперсных порошков со структурой граната базируются на реакциях соосаждения гидроксидов иттрия и алюминия с последующим прокаливанием осадков; применяются также варианты прогрессивного золь-гель процесса [3].

Целью настоящей работы является поиск новых способов синтеза ультрадисперсных оксидных соединений со структурой граната и изучение влияния технологических режимов на их структурные, физико-химические и спектрально-люминесцептные характеристики.

Варианты формирования порошков иттрий-алюминиевого граната приведены в таблице.

Таблица - Способы получения порошкообразных прекурсоров ИАГ

Способ синтеза порошка	Исходные реагенты	Термо- обработка, °С	D_{cp} , мкм $S_{yд}$, м $^2/\Gamma$	Примечания
Прямой синтез из оксидов	Y ₂ O ₃ ,Al ₂ O ₃	1500-1600	10-30 0,2-0,5	Большой разброс частиц по размерам
Осаждение в среде аммиака	Y(NO ₃) ₃ , Al(NO ₃) ₃ , NH ₄ OH	1000	3,2 8,3	Хорошо сформирован- ные частицы
Осаждение в среде ГМТА	$Y(NO_3)_3$, $Al(NO_3)_3$, $(CH_3)_6N_4$	1000	5,4 5,28	Сильная агломерация
Термо-химический синтез	$Y(NO_3)_3$, $Al(NO_3)_3$,	1200	9,9	Присутствие других фаз

В результате исследований по разработке метода низкотемпературного синтеза порошков ИАГ предложен процесс соосаждения гидратированных оксидных прекурсоров-предшественников химического соединения $Y_3Al_5O_{12}$, легированного церием для создания наноструктурированных порошков нового поколения, основанный на взаимодействии

растворов азотнокислых солей со щелочными осадителями. В качестве таких осадителей применяли растворы аммиака NH_4OH (pH=12), гексаметилентетрамина (CH_2), CH_4 (CH_2), и этилендиамина (1,2-диаминоэтана) CH_2 (CH_2), гексаметилентетрамина (CH_2), CH_4 (CH_4), и алимина (1,2-диаминоэтана) CH_4 (CH_4), гексаметилентетрамина (CH_4), CH_4 (CH_4), и CH_4 (CH_4). Схема получения порошков и и и церия включает в себя приготовление CH_4 (CH_4) растворов нитратов иттрия и алиминия, их смешивание с нитратом церия и добавление смеси при перемешивании в раствор осадителя. После отмывания осадка от излишков осадителя и нитрат-ионов, следует сушка осадка и термообработка при температуре CH_4 (CH_4) на воздухе в муфельной печи в течение CH_4 часов (рисунок 1). Особенностью данной схемы является осаждение гидроксидов из концентрированных, горячих растворов соответствующих азотнокислых солей. В качестве источника ионов кремния применяли введение в систему тетраэтоксисилана (CH_4).

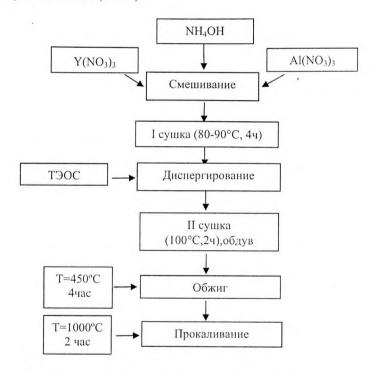


Рисунок 1 – Схема синтеза порошкообразных образцов ИАГ

Исследование особенностей структуры и фазового состава синтезированных порошков были проведены методами рентгенофазового анализа (РФА) на дифрактометре ДРОН-7.

По данным РФА установлено, что основной фазой порошка, полученного осаждением в аммиаке с последующей термообработкой при $1000-1300^{\circ}$ С, является кристаллический гранат химического состава $Y_3Al_5O_{12}$, в то же время для осадка, полученного путем взаимодействия

солей иттрия и алюминия с гексаметилентетрамином (ГМТА) отмечается формирование более рыхлого, близкого к аморфному порошка.

Рентгенограммы порошков, полученных методом осаждения в растворе аммиака и ГМТА, приведены на рисунках 2 и 3.

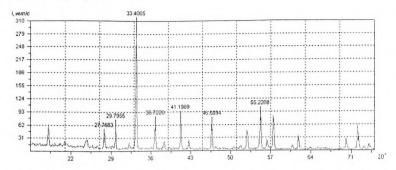


Рисунок 2 - Дифрактограмма ИАГ, полученного методом осаждения в растворе NH_4OH_c последующим прокаливанием при $1000^{\circ}C$

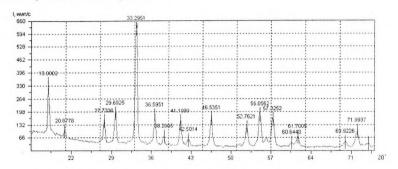


Рисунок 3 - Дифрактограмма ИАГ, полученного методом осаждения в растворе ГМТА с последующим прокаливанием при 1000° С

Керамические образцы для исследований готовились путем одноосного прессования на прессе силой 6Т. Из анализа АСМ-изображения (NT-206) можно сделать заключение, что размер зерна в керамике оставляет от 5 до 10мкм, структура является плотноупакованной, а форма зерна приближается к квазисферической. Плотность керамического материала составляет приблизительно 96% от теоретической плотности Y₃Al₅O₁₂.

Рентгенофазовый анализ прессованного и прокаленного при $T=1450^{\circ}\mathrm{C}$ материала показал, что основной фазой поликристаллической керамики является гранат кубической модификации химического состава $Y_3\mathrm{Al}_5\mathrm{O}_{12}$.

Спектрально-оптические исследования церийсодержащих керамических образцов, сформированных путем жидкофазного спекания [4] проводили при возбуждении

 $_{
m домин}$ есценции светом ртутной лампы с фильтром, вырезающим область длин волн от 300 до $_{
m 500~hm}$ с центром на 450 нм.

Из рассмотрения рисунка 4 можно сделать заключение, что порошки на основе Ce:YAG, синтезированные с использованием стехиометрической смеси оксидов иттрия и алюминия, а также легирующих добавок состава SiO₂-Ce, Mn, Li люминесцируют в диапазоне 470-700нм, причем наибольшей интенсивностью люминесценции обладают образцы с примесями кремния и церия.

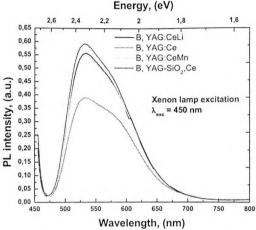


Рисунок 4 — Спектры люминесценции порошкообразных образцов в зависимости от состава легирующей добавки.

Представлены результаты разработки новых способов синтеза ультрадисперсных оксидных порошков - соединений со структурой граната, легированных ионами РЗЭ, которые могут применяться в качестве предшественников (прекурсоров) поликристаллических лазерных сред и люминофоров нового поколения. Изучено влияние технологических режимов на их фазовые, физико-химические и спектрально-люминесцентные характеристики. Показано, что наибольшей интенсивностью люминесценции обладают образцы с примесями кремния и перия.

Литература

- 1. Копылов Ю.Л., Кравченко В.Б., Комаров А.А., Шемет В.В. Нанопорошки оксида иттрия и алюмоиттриевого граната и лазерные керамики на их основе. // Нанотехника: Инженерный журнал 2006.-№3.-С.62-69
- Akio Ikesue. Polycristalline Nd:YAG ceramics lasers // Optical Materials.-2002.-Vol.19.-P.183-187.
- 3. Sun Z, Yuan D., Li H.et al. Synthesis of yttrium aluminum garnet (YAG) by a new sol-gel method // J.Alloys and Compounds. 2004. Vol.379. P.L1-L3.
- Подденежный Е.Н., Гришкова Е.И., Бойко А.А., Артамонов В.В., Жуковец С. Г., Кудина Е. Ф., Тюрина С.И.. Проблемы жидкофазного спекания тугоплавких керамических материалов // Вестник ГГТУ им. П.О. Сухого. - 2007.-№1. - С.5-11