Современные технологии и экономика в энергетике : материалы Международной научно-практической конференции, 27 апреля 2023 г. — СПб. : ПОЛИТЕХ-ПРЕСС, 2022. — $184 \, \mathrm{c}$.

В сборнике опубликованы статьи ведущих ученых и преподавателей университетов России и Белоруссии, руководителей и специалистов отечественных и зарубежных промышленных и энергетических предприятий, студентов, аспирантов и молодых ученых университетов России и Белоруссии.

Конференция организована тремя крупнейшими университетами России и Белоруссии, реализующими подготовку специалистов в области энергетики и энергосбережения, а именно Санкт-Петербургским политехническим университетом Петра Великого, Казанским государственным энергетическим университетом и Белорусским национальным техническим университетом.

В материалах сборника рассмотрены актуальные проблемы экономики энергетики, энергосбережения, менеджмента в энергетики, современные технологии в энергетике, аспекты ядерной энергетики, а также цифровые технологии в энергетике и промышленности.

Ответственный за выпуск – канд. экон. наук, доц. *О. В. Новикова* Редакторы: *Р. С. Киреев, С. С. Каюкова*

Печатается по решению Совета по издательской деятельности Ученого совета Санкт-Петербургского политехнического университета Петра Великого. 35 МВт, а после МО и Γ О – 25 МВт. Результаты исследования могут быть рекомендованы для дальнейших расчетов в части применения ТНУ на Василеостровской ТЭЦ-7.

ЛИТЕРАТУРА

- 1. Энергетическая стратегия России на период до 2035 года (основные положения) [Электронный ресурс]. URL: https://ac.gov.ru/files/content/1578/11-02-14-energostrategy-2035-pdf.pdf#:~:text=Энергетическая%20Стратегия%20России%20на%20период,позиции%20в%20 мировой%20атомной%20энергетике
- 2. Аникина И.Д., Трещева М.А., Скулкин С.В., Киселев В.Г. Применение тепловых насосов для энерго- и ресурсосбережения на ТЭС, 2021 118 с.
- 3. Аникина И.Д. Использование тепловых насосов в технологических схемах ТЭЦ с учетом особенностей режимов производства и потребления теплоты // Диссертация на соискание ученой степени кандидата технических наук. 2016.

УДК 658.261:621.56

А.В. Овсянник, В.П. Ключинский Гомельский государственный технический университет им. П.О. Сухого

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ КОГЕНЕРАЦИОННОЙ, ТРИГЕНЕРАЦИОННОЙ И ПОЛИГЕНЕРАЦИОННОЙ УТИЛИЗАЦИИ ВТОРИЧНЫХ ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ

Введение. Вторичные энергетические ресурсы в больших количествах присутствуют на промышленных предприятиях в виде топлив с низкой теплотворной способностью и тепловых отходов. Для утилизации таких отходов все более широкое применение в малой энергетике находят схемы на органическом цикле Ренкина (ОЦР) [1].

Актуальность. Помимо электрической и тепловой энергии зачастую предприятия нуждаются в холоде и углекислоте. К ним относятся предприятия фармацевтической, горнодобывающей, химической, целлюлозно-бумажной и др. промышленностей. Для удовлетворения потребностей предприятий в электрической и тепловой энергии, холоде и углекислоте разработаны схемы когенерационной, тригенерационной и полигенерационной утилизации вторичных энергетических ресурсов (ВЭР).

Цель исследования. Сравнить когенерационный, тригенерационный и полигенерационный способы утилизации ВЭР. Объектом исследования являются схемы утилизации ВЭР на основе низкокипящих рабочих тел, а предметом исследования является оценка экономической эффективности исследуемых вариантов утилизации ВЭР. С учетом поставленной цели в исследовании решалась задача оценки эффективности способов утилизации ВЭР.

Для утилизации вторичных энергетических ресурсов предприятий, которые нуждаются в электрической энергии, теплоте, холоде и углекислоте, разработана схема полигенерационной установки (рисунок 1), которая объединяет в себе ОЦР установку и установки по производству углекислоты и холода. На рисунке

1 представлены следующие элементы: 1,13,16,6т – теплообменный аппарат; 2 – абсорбер; 3 – десорбер; 4 – брызгоотделитель; 5 – осущитель; 6 – инжектор; 7 – ресивер; 8 – компрессор; 9 – конденсатор; 10,14 – регулирующий вентиль; 11,15 – сепаратор; 12,5т – насос; 1ка – котлоагрегат;; 1т – котел-утилизатор; 2т – турбина на НКРТ; 3т – генератор; 4т – конденсатор.

Рисунок 1 – Полигенерационная турбоустановка на ВЭР [2]

Расчет исследуемых вариантов схем проводился при помощи созданной специализированной программы [3] и разработанной методики экономических показателей схем [4]. Полученные результаты представлены в таблице 1. Из таблицы 1 следует, что все варианты схем утилизации вторичных энергетических ресурсов обладают приемлемыми технико-экономическими показателями и могут быть использованы на предприятиях. Наименьшей эффективностью обладает когенерационная паросиловая установка на водяном паре (Вар.1) с динамическим сроком окупаемости 7,1 года при ставке дисконтирования 10 %. Тригенерационня установка на ОЦР с промежуточным перегревом и сверхкритическими параметрами рабочего тела (Вар.2) позволяет количество производимой в установке электрической энергии и положительно сказывается на сроке окупаемости установки (динамический срок окупаемости снижается с 7,1 года до 4,5 года). Наилучшими показателями обладает полигенерационная установка на диоксиде углерода (Вар.3). Несмотря на снижение количества отпускаемой электрической энергии такая компоновка схемы позволяет производить углекислоту в жидком и газообразном состоянии в объеме 4,2 тысяч тон в год, что положительно сказывается на экологической безопасности предприятия и улучшает его экономические показатели,

а динамическим сроком окупаемости установки снижается с 4,5 года (для тригенерации) до 3,2 года.

Таблица 1: Оценка эффективности утилизации ВЭР

Показатель	Способ утилизации ВЭР		
	Bap.1	Bap.2	Bap.3
Отпуск электроэнергии, ×10 ³ МВт·ч/год	11,3	13,7	11,8
Отпуск тепловой энергии, ×10 ³ МВт·ч/год	7,4	7,4	7,4
Отпуск холод, ×10 ³ МВт-ч/год	-	3,7	3,7
Отпуск CO ₂ , ×10 ³ т/год	-	-	4,2
Экономический эффект, ×10 ⁶ \$/год	1,3	1,6	2,2
Стоимость установки, ×10 ⁶ \$	2,3	2,5	3,3
Расходы на эксплуатацию, ×10 ⁶ \$/год	0,2	0,2	0,3
Статический срок окупаемости, лет	4,9	3,5	2,6
Внутр. норма доходности, %	19,7	28,5	37,9
Дин. срок окупаемости, лет	7,1	4,5	3,2
Чистый дисконтированный доход, ×10 ⁶ \$	1,6	3,7	7,3

Выводы. Разработанная схема полигенерации является наилучшим из предлагаемых вариантом утилизации вторичных энергетических ресурсов, которая не только обладает хорошими экономическими показателями эффективности (динамический срок окупаемости — 3,2 года), но и позволяет полезно использовать производимую углекислоту, тем самым снижая углеродный след предприятия.

ЛИТЕРАТУРА

- 1. Ho, T. Comparison of the Organic Flash Cycle to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy / T. Ho etc. // Energy. 2012. Vol. 42. P. 213-223.
- 2. Овсянник А. В. Тригенерационные турбоустановки на основе низкокипящих рабочих тел./ А.В. Овсянник, В. П. Ключинский // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022. № 3 (65). С. 263–275.
- 3. Овсянник, А.В. Разработка компьютерной программы для оптимизации параметров низкокипящего рабочего тела в турбодетандерной установке / А. В. Овсянник, В. П. Ключинский // Вестник ГГТУ им. П.О. Сухого. − 2020. № 3/4. С. 108–115.
- 4. Ключинский, В. П. Термодинамический и технико-экономический анализ тригенерационных установок на органическом цикле Ренкина / В. П. Ключинский, А. В. Овсянник // Вестник ГГТУ им. П.О. Сухого. 2022. \mathbb{N} 1. С. 80–89.