Доклады Академии Наук СССР 1939. том XXIV, № 2

MATEMATHKA

п. е. дюбюк

ОБ ИНВАРИАНТНЫХ ПОДГРУППАХ В КОНЕЧНОЙ ГРУППЕ

(Представлено академиком О. Ю. Шмидтом 19 V 1939)

В настоящей заметке усиливаются и обобщаются результаты, полученные автором в работах $(^{1},^{2})$. Применяя обозначения, которые уже были использованы в упомянутых статьях, формулируем следующие теоремы о нормализаторе элемента в конечной группе.

Те ор е м а 1. Пусть A— элемент порядка p^k некоторой группы \mathfrak{G} (p—простое число). Пусть \mathfrak{F} —подгруппа индекса \mathfrak{P} квазинормализатора $\mathfrak{R}^{(k-i-1)}_{A^{p^i}}$ элемента A^{p^i} . Если \mathfrak{P} не делится на p^{i+1} и каждый элемент \mathfrak{F} ,

 A^{pi} сопряженный с A^{z} , имеет вид A^{mz} , где $m \equiv 1 \pmod{p}$, то отношение порядков нормализаторов элементов A^{pi+1} и A^{pi} не делится на p^{2} .

Теорема 2. Пусть $\mathfrak{P}-$ силовская p-подгруппа (k-1)-го квазинормализатора элемента A порядка p^k группы \mathfrak{G} (p-простое число). Если каждый элемент \mathfrak{P} , сопряженный с A^z , имеет вид A^{mz} , где $m\equiv 1\pmod{p}$, то отношение порядков нормализаторов элементов $A^{p^{k-1}}$ и A не делится на p^k .

Tеорема 3. Пусть A— элемент порядка p^k группы \mathfrak{G} (p—простое число). Если каждый элемент квазинормализатора $\mathfrak{R}_{A}^{(k-i-1)}$ элемента A^{p^i} ,

сопряженный с A^{p^i} , имеет вид A^{mp^i} , причем $m \equiv 1 \pmod{p}$, то отношение порядков нормализаторов элементов $A^{p^{i+1}}$ и A^{p^i} не делится на p^2 .

Теорема 4. Пусть A—элемент порядка p^k группы $\mathfrak G$ (p—нечетное простое число). Пусть $\mathfrak B$ —силовская p-подгруппа (k-1)-го квазинормализатора элемента A. Если каждый элемент P группы $\mathfrak B$, удовлетворяющий условию $P^p \subset \{A\}$ и сопряженный с A^z , имеет вид A^{mz} , где $m \equiv 1 \pmod p$, то отношение порядков нормализаторов элементов $A^{p^{k-1}}$ и A не делится на $p^{k-\lambda_0+1}$.

Теорема 5. Пусть A—элемент порядка p^k группы (p-n) стое число). Пусть P—силовская p-подгруппа нормализатора циклической группы A. Если каждый элемент группы P, удовлетворяющий условию $P^p \subset A$ и сопряженный с A^z , имеет вид A^{mz} , где $m \equiv 1 \pmod p$, то отношение порядков нормализаторов групп $A^{p^{k-1}}$ и $A^{p^{k-1}}$ и $A^{p^{k-1}}$ и $A^{p^{k-1}}$ и $A^{p^{k-1}}$ гравнимо с единицей по модулю $A^{p^{k-1}}$ гравнимо с

При доказательстве теорем 1-3 применяются методы, уже ^fиспользованные автором в упоминавшихся выше работах, причем ряд дополнительных замечаний позволяет несколько сократить промежуточные выкладки. Вывод теорем 4-5 требует также применения некоторых новых приемов.

Из теоремы 5 вытекает, что символ λ_i сохраняет смысл и для p=2, если только $\mathfrak{N}_A^{(1)}=\mathfrak{N}_A^{(2)}$. При соблюдении условий этой теоремы будут иметь место равенства

$$\lambda_0 = \lambda_1 = \lambda_2 = \ldots = \lambda_{k-\lambda_0}$$

и далее

$$\lambda_{k-\lambda_0+1} = \lambda_0 - 1 \dots, \ \lambda_{k-2} = 2, \ \lambda_{k-1} = 1.$$

Далее очевидным образом обобщается одна теорема, доказанная в работе В. К. Туркина и П. Е. Дюбюка «Об одном признаке непростоты группы» (3). Именно, оказывается возможным, сохранив доказательство теоремы, формулировать ее в следующем, более общем виде:

тельство теоремы, формулировать ее в следующем, более общем виде: Теорема 6. Пусть A—элемент порядка п подгруппы $\mathfrak S$ группы $\mathfrak S$, причем всякий элемент $\mathfrak S$, сопряженный со степенью A, есть снова

степень А. Пусть
$$n=\prod_{i=1}^{\kappa}p_i$$
, где все p_i-n ростые числа и \mathfrak{R} — наимень-

шее кратное нормализаторов циклических групп $\{A^{\overline{p_i}}\}$. Если $\mathfrak H$ есть подгруппа $\mathfrak H$ и $\mathfrak H$ ($\mathfrak H$, A) не входит в коммутант $\mathfrak H$, то группа $\mathfrak H$ имеет нормальный делитель. Порядок этого нормального делителя кратен наибольшему делителю порядка группы $\mathfrak H$, взаимно простому с порядком группы $\mathfrak H$.

Символ Π (\mathfrak{N} , A) применяется в том же смысле, что и в цитированной работе (3).

Применяя теорему 2, а также некоторые предложения, приведенные в упоминавшейся раньше работе (2), можно обосновать такой критерий непростоты группы.

 \hat{T} е о р е ма \hat{T} . Пусть A— элемент порядка p^h группы \mathfrak{G} (p— нечетное, простое число). Пусть \mathfrak{F} — силовская p-подгруппа (k-1)-го квазинормализатора элемента A. Если каждый элемент \mathfrak{F} , сопряженный с A^z , имеет вид A^{mz} , где $m \equiv 1 \pmod{p}$, и элемент $A^{p^{k-1}}$ не принадлежит коммутанту силовской p-подгруппы нормализатора элемента A, то группа \mathfrak{G} имеет нормальный делитель.

Порядок этого нормального делителя кратен наибольшему делителю

 $nopя \partial \kappa a$ группы \mathfrak{G} , взаимно простому с p.

Теорема 7 будет справедлива и для случая p=2, если только в условие включить дополнительное требование несопряженности элемента $A^{2^{k-2}}$ со своим обратным элементом.

Далее, применяя теорему 6, теорему 5 и лемму, доказанную в работе В. К. Туркина и П. Е. Дюбюка (4), можно получить такой результат:

Теорема 8. Пусть A—элемент порядка p^h группы \mathfrak{G} (p—нечетное простое число). Пусть \mathfrak{F} —силовская p-подгруппа нормализатора циклической группы $\{A\}$. Если каждый элемент \mathfrak{F} , сопряженный с A^z , имеет вид A^{mz} , где $m \equiv 1 \pmod p$ и A не входит в коммутант \mathfrak{F} , то группа \mathfrak{G} имеет нормальный делитель,

Порядок этого нормального делителя кратен наибольшему делителю порядка группы В, взаимно простому с р.

Теорема 8 справедлива и для случая p=2, если только $\mathfrak{N}_A^{(1)}=\mathfrak{N}_A^{(2)}$. Следствием предыдущих результатов является такая теорема:

Tеорема 9. Пусть A — элемент порядка p^k группы \mathfrak{G} (p-n poстое число). $\Pi y cmb$ $\mathfrak{P}- c$ иловская p-подгруппа нормализатора элемента A. Если никакая степень А не сопряжена ни с одним из элементов \$ и А не входит к коммутант В, то группа В имеет нормальный делитель. Порядок этого нормального делителя кратен наибольшему делителю порядка группы В, взаимно простому с р.

Теорема 9 является обобщением известной теоремы W. Burnside'a, а также теорем В. К. Туркина (6) и автора (2).

Институт математики Московского государственного университета.

Поступило 27 V 1939.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 ДАН, XXII, № 3 (1939). 2 ДАН, XXIII, № 1 (1939). 3 ДАН, XXI, № 4 (1938). 4 ДАН, XX, №7—8 (1938). 5 Theory of Groups of Finite Order, р. 327; О. Ю. Шмидт, Абстрактная теория групп, 168 (1933). 6 Math. Annalen, 111 (1935).