Vol. 25, № 5

FRICTION AND WEAR

September-October 2004

УЛК 536.12:621.891

ОПТИМИЗАЦИЯ КОНСТРУКЦИЙ ВЕНТИЛИРУЕМЫХ ТОРМОЗОВ АВТОМОБИЛЕЙ

В. А. БАЛАКИНа⁺, В. П. СЕРГИЕНКО⁶, Ю. В. ЛЫСЕНОК

Рассмотрены пути совершенствования конструкций автомобильных тормозов с вентилируемым диском на основе анализа тепловых режимов их работы.

Ключевые слова: автомобиль, тормоз, трение, температура, тепловой поток, интенсивность фрикционного тепловыделения, конвективный теплоперенос.

Введение. В настоящее время в легковых и грузовых автомобилях наблюдается переход от дисковых тормозов со сплошным диском к тормозам с вентилируемым диском (рис. 1, a, δ). В вентилируемом тормозе два диска толщиной h_2 соединены между собой ребрами жесткости прямоугольного сечения.

При торможении автомобиля ребра жесткости, вращаясь вместе с дисками вокруг оси колеса, создают вентиляционный эффект, увеличивая теплоотдачу с внутренних поверхностей дисков, повышая интенсивность их охлаждения. Такая конструкция тормозов наиболее эффективна в условиях многократных (чередующихся друг за другом) торможениях, а также при длительных притормаживаниях автомобиля (например, на длинном горном спуске).

Цель статьи — дальнейшее совершенствования конструкций вентилируемых тормозов на основе анализа теплового режима их работы.

Тепловые схемы. На рис. 2, a, δ приводятся тепловые схемы дисковых тормозных механизмов со сплошным и вентилируемым дисками.

Распределение тепловых потоков между фрикционным и металлическим дисками определяется равенством

$$q(t) = q_1(t) + q_2(t).$$

В дисковом тормозе со сплошным диском происходит двухсторонний его нагрев (рис. 2, s). При этом со стороны нагретых дорожек трения площадью $A_{a2}-A_{a1}$ в окружающую среду направлен тепловой поток $q_3(t)=\alpha'(t)[\vartheta_2(0,t)-\vartheta_c]$. В этой симметричной тепловой задаче температура в середине диска толщиной $2h_2$ имеет минимальное значение, а температурная кривая — экстремум. Следовательно, градиент температуры здесь равен нулю. Это условие соответствует известной в теории теплопроводности задаче о нагреве теплоизолированной со стороны пластины ($z_2=h_2$) тепловым потоком $q'_2(t)=q_2(t)-q_3(t)$, которая существенно упрощается, если пластину считать неограниченной (рис. 2, z).

В вентилируемом тормозе со стороны дисков ($z_2 = h_2$) в окружающую среду направлен тепловой поток $q_4(t) = \alpha''[\vartheta_2(h_2, t) - \vartheta_c]$ (рис. 2, ∂). В теории теплопроводности также имеются точные решения одномерного уравнения теплопроводности при смешанных граничных условиях (2-го и 3-го родов).

а Государственный технический университет им. П. О. Сухого. Беларусь, 246746, г. Гомель, пр. Октября 48.

б Институт механики металлополимерных систем им. В. А. Белого НАНБ.

⁺ Автор, с которым следует вести переписку.

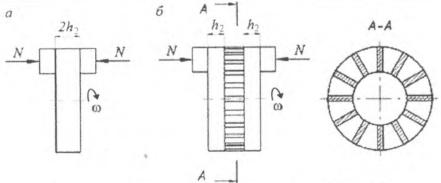


Рис. 1. Дисковые тормоза: a — сплошной диск; δ — вентилируемый диск

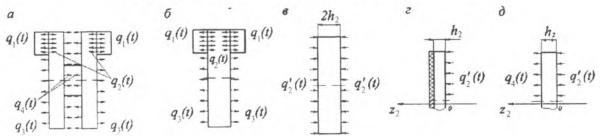


Рис. 2. Тепловые схемы дисковых тормозов: a — вентилируемый диск; b — сплошной диск; b — двухсторонний нагрев пластины; ε — нагрев пластины теплоизолированной со стороны ($z_2 = h_2$); δ — нагрев при наличии конвективного теплопереноса

Методика вычислений. Тепловой расчет тормоза будем проводить при условии, что сила трения $T = {\sf const.}\ {\sf B}$ этом случае скорость движения автомобиля и интенсивность фрикционного тепловыделения в зоне трения изменяются по линейным зависимостям.

Средние приращения температур в тормозах со сплошным и "вентилируемым" дисками для случаев экстренного торможения определяются формулой [1]

$$\vartheta_{2}(\eta_{2}, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})K_{BJ}q_{0}h_{2}}{\lambda_{2}}\Theta'_{2}(\eta_{2}, Fo_{2}) - \frac{(1 - \alpha_{T})K_{BJ}q_{0}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta''_{2}(\eta_{2}, Fo_{2});$$

где
$$\Theta_2'(\eta_2, \text{Fo}_2) = \text{Fo}_2 - \eta_2 + \frac{\eta_2^2}{2} + \frac{1}{3} + \sum_n A_n' \cos[\mu_n (1 - \eta_2)] \exp(-\mu_n^2 \text{Fo}_2);$$

$$\Theta_{2}''(\eta_{2}, Fo_{2}) = \frac{Fo_{2}^{2}}{2} + \frac{Fo_{2}}{3} - Fo_{2}\eta_{2} + \frac{Fo_{2}\eta_{2}^{2}}{2} + \frac{\eta_{2}^{4}}{24} - \frac{\eta_{2}^{3}}{6} + \frac{\eta_{2}^{2}}{6} - \frac{1}{45} - \sum_{n=1}^{\infty} A_{n}''\cos[\mu_{n}(1 - \eta_{2})]\exp(-\mu_{n}^{2}Fo_{2});$$

$$\eta_2 = \frac{z_2}{h_2}$$
, $Fo_2 = \frac{a_2 t}{h_2^2}$, $\mu_n = n\pi$, $A'_n = (-1)^{n+1} \frac{2}{\mu_n^2}$, $A''_n = (-1)^{n+1} \frac{2}{\mu_n^4}$.

$$\alpha_T = \frac{K_{_{\rm B3}}\sqrt{\lambda_1c_1\rho_1}}{K_{_{\rm B3}}\sqrt{\lambda_1c_1\rho_1} + \sqrt{\lambda_2c_2\rho_2}} \;, \quad K_{_{\rm B3}} = \frac{A_{a_1}}{A_{a_2}} \;, \quad q_0 = 2q_{\rm cp} = \frac{2W_1}{A_{a_1}t_T} \;, \quad q_{\rm cp} = \frac{W_1}{A_{a_1}t_T} \;.$$

Средние приращения температур на поверхности трения (при $\eta_2 = 0$) сплошного тормозного диска определяются соотношениями [1-3]

$$\theta_{2}(0, \text{Fo}_{2}) - \theta_{0} = \frac{(1 - \alpha_{T})K_{\text{BS}}q_{0}h_{2}}{\lambda_{2}}\Theta_{2}'(0, \text{Fo}_{2}) - \frac{(1 - \alpha_{T})K_{\text{BS}}q_{0}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta_{2}''(0, \text{Fo}_{2}), \tag{1}$$

где
$$\Theta_2'(0, \text{Fo}_2) = \text{Fo}_2 + \frac{1}{3} + \sum A_n' \cos \mu_n \exp(-\mu_n^2 \text{Fo}_2);$$

$$\Theta_2''(0, Fo_2) = \frac{Fo_2^2}{2} + \frac{Fo_2}{3} - \frac{1}{45} - \sum_{n=1}^{\infty} A_n'' \cos \mu_n \exp(-\mu_n^2 Fo_2)$$
.

В вентилируемом тормозном диске средние приращения температур при экстренных торможениях определяются из выражений [1]

$$\vartheta_{2}(\eta_{2}, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{BJ}h_{2}}{\lambda_{2}}\Theta_{2}'''(\eta_{2}, Fo_{2}) - \frac{(1 - \alpha_{T})q_{0}K_{BJ}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta_{2}''(\eta_{2}, Fo_{2}),$$

где

$$\Theta_{2}^{m}(\eta_{2}, Fo_{2}) = 1 - \eta_{2} + \frac{1}{Bi_{2}} - \sum_{n=1}^{\infty} A_{n}^{m} cos(\mu_{n}\eta_{2}) exp(-\mu_{n}^{2}Fo_{2});$$

$$Bi_2 = \frac{\alpha'' h_2}{\lambda_2}$$
, $ctg\mu_n = \frac{1}{Bi_2}\mu_n$, $A_n''' = \frac{2(\mu_n^2 + Bi_2^2)}{\mu_n^2(\mu_n^2 + Bi_2^2 + Bi_2)}$.

На поверхности трения (при $\eta_2 = 0$)

$$\vartheta_{2}(0, \operatorname{Fo}_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}}\Theta_{2}^{""}(0, \operatorname{Fo}_{2}) - \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta_{2}^{"}(0, \operatorname{Fo}_{2}), \tag{2}$$

где

$$\Theta_2^m(0, Fo_2) = 1 + \frac{1}{Bi_2} - \sum_{n=1}^{\infty} A_n^m \exp(-\mu_n^2 Fo_2).$$

Уравнение (1) и (2) можно переписать в виде:

$$\theta_{2}(0, Fo_{2}) - \theta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}} \left[1 - \frac{\Theta_{2}''(0, Fo_{2})}{\Theta_{2}'(0, Fo_{2})} \frac{1}{Fo_{2_{T}}} \right], \tag{3}$$

$$\vartheta_{2}(0, \operatorname{Fo}_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}} \left[1 - \frac{\Theta_{2}''(0, \operatorname{Fo}_{2})}{\Theta_{2}'''(0, \operatorname{Fo}_{2})} \frac{1}{\operatorname{Fo}_{2}} \right], \tag{4}$$

где $\text{Fo}_{2_T} = \frac{a_2 t_T}{h_2^2}$ — число Фурье соответствующее концу процесса торможения.

При кратковременных однократных торможениях значение теплового потока q_4 мало и $\Theta'_1(0, \operatorname{Fo}_2) \approx \Theta'''_1(0, \operatorname{Fo}_2)$.

При многократных, чередующихся друг за другом торможениях, либо при движении автомобиля по длинному горному спуску температура на поверхности ($z_2 = h_2$) вентилируемого тормоза существенно повышается, соответственно возрастает и тепловой поток q_4 .

При больших числах Фурье $\Theta_2''(0, Fo_2) < \Theta_2'(0, Fo_2)$, что влечет за собой уменьшение расчетного значения приращения температуры поверхности трения, что следует из уравнений (3) и (4).

Численные значения безразмерных функций $\Theta_2''(0, Fo_2)$ и $\Theta_2'(0, Fo_2)$ представлены на рис. 3. Значения критерия Bi_2 зависит от коэффициента теплоотдачи α'' (в табл. 1).

Количество теплоты, отдаваемое нагретой гладкой межреберной поверхностью ($z_2 = h_2$) площадью S (рис. 4, a) в единицу времени определяется по формуле:

$$Q = \alpha_2'' S[\vartheta_2(1, Fo_2) - \vartheta_c],$$

где $\eta_2 = 1$.

Для вентилируемых тормозов (рис. 4, δ), следует ожидать более высоких значений a_2 ".

Если бы площадь S была покрыта небольшими полусферическими выступами радиуса r (рис. 4, δ), то поверхность теплоотдачи возросла бы ровно в два раза, поскольку площадь поверхности полусферы, $S^* = 2\pi r^2$, в два раза больше площади ее круглого основания $S^{**} = \pi r^2$. Тогда ко-

личество теплоты, отдаваемое с волнистой межреберной поверхности в единицу времени, увеличивается и находится из соотношения

$$Q = 2\alpha_{2}'' S[\vartheta_{2}(1, Fo_{2}) - \vartheta c] = \alpha_{2\pi p}'' S[\vartheta_{2}(1, Fo_{2}) - \vartheta_{c}].$$

Следовательно, приведенный коэффициент теплоотдачи $\alpha_{2np}'' = 2\alpha_2''$. Очевидно, на практике следует ожидать, что $\alpha_{2np}'' > 2\alpha_2''$, поскольку наличие волнистой поверхности дополнительно "возмущает" воздух.

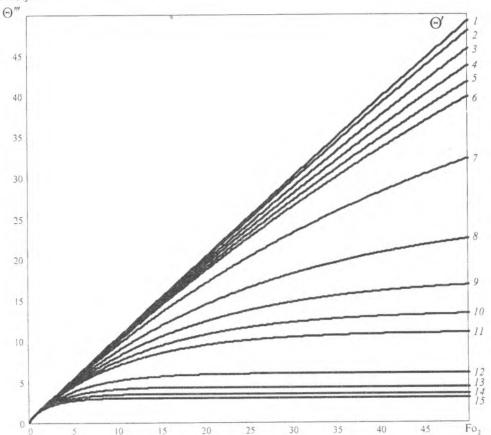


Рис. 3. Зависимость безразмерных функций Θ''' и Θ' от безразмерного времени Fo_2 при разных значениях критерия Bi: $I + Bi = 10^{-3}$; $2 - 2 \cdot 10^{-3}$; $3 - 4 \cdot 10^{-3}$; $4 - 6 \cdot 10^{-3}$; $5 - 8 \cdot 10^{-3}$; $6 - 10^{-2}$; $7 - 2 \cdot 10^{-2}$; $8 - 4 \cdot 10^{-2}$; $9 - 6 \cdot 10^{-2}$; $10 - 8 \cdot 10^{-2}$; $11 - 10^{-1}$; $12 - 2 \cdot 10^{-1}$; $13 - 3 \cdot 10^{-1}$; $14 - 4 \cdot 10^{-1}$; $15 - Bi = 5 \cdot 10^{-1}$

Таблица 1. Коэффициенты теплоотдачи для барабанных автомобильных тормозов

Скорость вращения тормозного барабана v, м/с	5	12	19	23
Коэффициент теплоотдачи а", Вт/(м²-К)		43,0	53,7	56,2

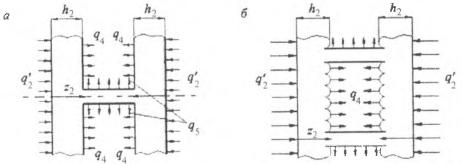


Рис. 4. Тепловые схемы вентилируемых тормозов: a- гладкая межреберная поверхность ($z_2=h_2$); b- волнистая межреберная поверхность

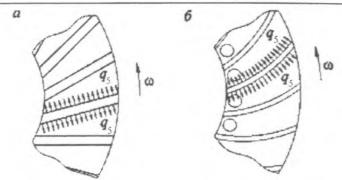


Рис. 5. Виды ребер жесткости: a — наклоненные под углом; δ — криволинейные

Еще большего увеличения теплоотдачи можно достичь путем изменения наклона ребер жесткости в сторону вращения диска (рис. 5, a), либо профилирования их в виде криволинейных поверхностей (рис. 5, δ). В этом случае возрастает скорость воздушного потока около ребер, а также коэффициенты теплоотдачи и тепловые потоки $q_5 = \alpha'''[9_\rho - 9_c]$.

Длина и, следовательно, площадь криволинейного ребра больше прямолинейного, что улучшает условия конвективного теплопереноса. Наличие отверстий у основания ребер (рис. 5, δ) тоже способствуют возрастанию скорости течения воздуха в межреберном пространстве и улучшению теплоотдачи в окружающую среду.

Явно выраженный эффект снижения теплонагруженности, по сравнению с тормозами со сплошным диском, конструкции вентилируемых тормозов дают в условиях притормаживаний автомобилей на длинных горных спусках. Если автомобиль движется по такому спуску с постоянной скоростью, то формулы (1) и (2) приобретают вид:

$$\vartheta_{2}'(0, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}}{\lambda_{2}}\Theta_{2}'(0, Fo_{2}), \tag{5}$$

$$\vartheta_{2}''(0, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}}{\lambda_{2}}\Theta_{2}'''(0, Fo_{2}). \tag{6}$$

Разделив левые и правые части уравнений (6) и (5), получим:

$$\frac{\vartheta_{2}''(0, Fo_{2}) - \vartheta_{0}}{\vartheta_{2}'(0, Fo_{2}) - \vartheta_{0}} = \frac{\Theta_{2}'''(0, Fo_{2})}{\Theta_{2}'(0, Fo_{2})}.$$

Видно, что отношение приращений температур зависит от отношения безразмерных функций (рис. 6).

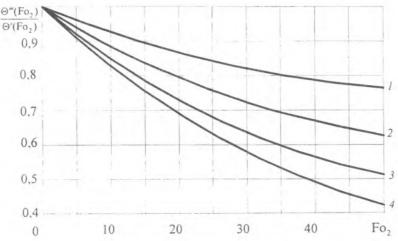


Рис. 6. Зависимость отношения $\frac{\Theta^{**}(Fo_2)}{\Theta'(Fo_2)}$ от критерия Fo_2 при разных значениях Bi: $1-Bi=10^{-2}; 2-2\cdot10^{-2}; 3-3\cdot10^{-2}; 4-Bi=4\cdot10^{-2}$

Пример расчета. Сравним тепловые режимы работы дисковых тормозов автомобиля Volvo 780 при его движении с постоянной скоростью 30 км/ч по горному спуску с 8% уклоном ($\alpha=4^{\circ}30'$). Передние тормоза автомобиля оборудованы вентилируемым диском $h_2=6$ мм, $A_{a1}=53.9$ см², $A_{a1}=\pi(R^2_2-R^2_1)=338$ см², $K_{B3}=0.16$; задние тормоза – сплошным диском: $2h_2=12$ мм, $A_{a1}=55.4$ см², $K_{B3}=0.16$. Масса автомобиля m=1.6 т.

Теплофизические свойства трущихся материалов:

 $λ_1 = 1$ Bt/(M·K), $c_1 = 1250$ Дж/(KΓ·K), $ρ_1 = 1950$ KΓ/M³ , $λ_2 = 30$ Bt/(M·K), $c_2 = 540$ Дж/(KΓ·K), $ρ_2 = 7600$ KΓ/M³.

Коэффициент теплоотдачи вентилируемого тормоза $\alpha''_{np} = 150 \text{ Bt/(M}^2 \cdot \text{K)}, \ \text{Bi}_2 = \frac{\alpha''_{np} h_2}{\lambda_2} = 0.03.$

Расчет выполняем в следующей последовательности.

- 1. Находим значение $\alpha_T = \frac{K_{_{\rm BS}}^* \sqrt{\lambda_1 c_1 \rho_1}}{K_{_{\rm BS}} \sqrt{\lambda_1 c_1 \rho_1} + \sqrt{\lambda_2 c_2 \rho_2}} = 0,0205$.
- 2. Определяем энергию торможения автомобиля $W = mg\theta \sin\alpha = 9,68$ кВт.
- 3. Принимая, что передние и задние тормоза поглощают одинаковую энергию, находим: $W_T = \frac{W}{4} = 2,42 \; \mathrm{kBt}.$
- 4. Средняя интенсивность фрикционного тепловыделения при наличии двух пар трения $q_0 = \frac{W_T}{2A} = 225 \text{ BT/(m}^2 \cdot \text{K)}.$
 - 5. Вычисляем параметр, входящий в формулы (5) и (6) $\frac{(1-\alpha_T)q_0h_2K_{_{\rm B3}}}{\lambda_2}=7,1$.

Тогда формулы (5) и (6) приобретают вид

$$\vartheta_2'(0, Fo_2) - \vartheta_0 = 7, 1\Theta'(0, Fo_2),$$
 (7)

$$\theta_2''(0, Fo_2) - \theta_0 = 7, 1\Theta'''(0, Fo_2)$$
. (8)

Результаты расчета приведены в табл. 2.

Таблица 2. Результаты расчета приращения температур

	<i>t</i> , c	Fo,	S, м	$\Theta'(0, Fo_2)$	$\Theta'''(0, \operatorname{Fo}_2)$	$\theta_2'(0, F_{0_2}) - \theta_0, K$	$\vartheta_2''(0,F_{0_2})-\vartheta_0$, K	$\frac{9_2''(0, Fo_2) - 9_0}{9_2'(0, Fo_2) - 9_0} \cdot 100\%$
Г	10	2,11	83,3	2,44	2,41	17,2	17,0	98,8
Г	50	10,6	417	10,9	9,1	77	63	83,1
	100	21,1	833	21,4	15,5	151	109	72,2
	150	31,7	1250	32,0	20,5	225	144	64,1
	200	42,2	1670	42,5	24,3	300	171	57,3
	250	52,8	2380	53,1	26,7	375	188	50,2

Видно, что чем больше время притормаживания, тем в большей степени проявляется эффективность вентилируемых тормозов. На пути торможения S=2380 м приращение температуры поверхности трения вентилируемого тормоза составляет 50,2% от приращения температуры трения на поверхности сплошного диска.

Заключение. Таким образом нами предложен метод теплового расчета тормозов автомобилей с вентилируемым диском. Показаны пути увеличения интенсивности конвективного теплообмена такого тормоза с окружающей средой. Рассмотрены конструктивные меры по совершенствованию конструкций тормозов с вентилируемым диском.

Обозначения

t — время; t_T — полное время торможения; z_1 , z_2 — координаты по осям, перпендикулярным к поверхности трения и направленным в трущиеся тела; θ_1 , θ_2 — температуры фрикционной на-

кладки и металлического диска; 9_0 — начальная температура; 9_p — температура поверхности ребра; 9_c — температура среды; ∞ — угловая скорость колеса; q — интенсивность фрикционного тепловыделения; q_0 — начальная интенсивность тепловыделения; q_1 , q_2 , q_3 — тепловые потоки в фрикционную накладку, металлический диск и с нагретой дорожки трения; q'_2 — тепловой поток нагревающий неограниченную пластину со стороны $z_2=0$; q_4 — тепловой поток в вентилируемом тормозном диске со стороны $z_2=h_2$ направленный в окружающую среду; q_5 — тепловой поток, направленный с поверхности ребра жесткости вентилируемого тормозного диска в окружающую среду; α_T — коэффициент распределения тепловых потоков; α' , α'' , α''' — коэффициенты теплоотлачи; K_{B3} — коэффициент взаимного перекрытия; A_{a1} , A_{a2} — номинальные площади контакта фрикционной накладки и дорожки трения диска; S — площадь межреберной поверхности вентилируемого тормозного диска; $\lambda_{1,2}$, $c_{1,2}$, $\rho_{1,2}$, $a_{1,2}$ — теплопроводность, теплоемкость, плотность, температуропроводность тела и контртела; h_1 , h_2 — толщины фрикционной накладки и контртела (диска); q_2 — безразмерная координата; T — сила трения; N — нормальная нагрузка; W — кинетическая энергия, поглощаемая одним тормозом; Q — количество теплоты отдаваемое в единицу времени с межреберной поверхности; Fo_2 — критерий Фурье; Fo_2 — критерий Био.

Литература

- 1. **Балакин В. А., Сергиенко В. II**. Тепловые расчеты тормозов и узлов трения. Гомель: ИММС НАНБ. 1999
- 2. **Балакин В. А.**, **Сергиенко В. П.** Тепловой расчет тормозов легковых автомобилей // Трение и износ. 1999 (**20**), № 3, 270—281
- 3. **Балакин В. А., Сергиенко В. П., Родзевич П. Е.** Сравнительный анализ дисково-колодочных тормозов легковых автомобилей. // Трение и износ. 2000 (21), № 4, 408—413
- 4. **Казаринов В. М., Карвацкий Б. Л.** Расчет и исследование автотормозов. М.: Трансжелдориздат. 1961
- 5. **Балакин В. А., Сергиенко В. П., Родзевич П. Е.** Тепловая нагруженность тормозов с учетом сил инерции // Трение и износ. 2000 (21), № 60, 585—592

Поступила в редакцию 26.03.04.

Balakin V. A., Sergienko V. P., and Lysenok Y. V. Optimizing of air-cooled automotive brake designs.

The means of perfecting structures of car brakes with air-cooled discs are discussed in terms of analyzing operating heat regimes.