Доклады Академии Наук СССР 1939. том XXIII, № 7

ГЕНЕТИКА

В. И. ПАТРУШЕВ

ФИЗИОЛОГИЧЕСКИЕ РАЗЛИЧИЯ В ПРЕДЕЛАХ ПОРОДЫ ЧИСТО-КРОВНЫХ АНГЛИЙСКИХ СКАКОВЫХ ЛОШАДЕЙ

(Представлено академиком Н. И. Вавиловым 8 IV 1939)

Согласно селекционной теории Дарвина породные различия являются результатом отбора животных с изменениями в строении тела, скорости роста, производительности и т. д. Наследственные уклонения животных от среднего типа породы в большей части не велики и, как указывал Дарвин, часто мало заметны для глаза. Последнее обстоятельство с давних пор представляет серьезные затруднения для селекционера. Считая, что наследственные уклонения в отношении производительности животных обусловлены в первую очередь изменениями в деятельности основных физиологических систем организма, мы находим необходимым в целях разработки современной теории селекции изучение межпородной и внутрипородной дифференциации по физиолого-биохимическим показателям в связи с продуктивностью животных. Современные методы клинического исследования животных дают возможность определять даже незначительные отклонения в общем и частном обмене веществ, и задача зоотехника заключается в установлении селекционного значения этих отклонений. Связь межпородных физиологических различий с продуктивностью животных убедительно показана в ряде исследований. Вполне понятно, что внутрипородные различия будут менее значительными с более сильно выраженной трансгрессией признаков. Поэтому обычные статистические приемы анализа различий (тройная ошибка и т. д.) в этом случае не всегда приложимы. В большей части случаев, с нашей точки зрения, можно судить о вероятности различий на основании одинакового направления изменчивости по ряду групп животных, а также по многим показателям, характеризующим с разных сторон один и тот же процесс.

В 1938 г. нами проведено физиологическое исследование лошадей

Московского ипподрома.

Результаты исследования показывают, что животные одного пола и возраста, достигшие более высоких размеров и живого веса, имеют в среднем более высокую концентрацию красной крови, глютатиона, белков сыворотки крови, а также более высокое содержание глобулинов в белках сыворотки. В табл. 1 приведены данные о связи состава крови с живым весом по одной из наиболее многочисленных однородных групп лошадей (двухлетних жеребчиков).

Плюс- и минус-варианты по относительному объему форменных элементов крови различаются в среднем по весу на 10 кг. При этом среди

⁷ Доклады Акад. Наук СССР, 1939, т. XXIII, № 7.

		ан-	Живой вес						
№ п/п.	Показатели крови	Плюс-и ми- нус-вариан- ты по ссст. крови	по 1 пока-		по 2 пока- зателям		по 4 пока зателям		
		Плюс- нус-ва ты по крови	n	M	n	M	n	M	
1	Относит. объем формен- ных элементов крови	+	25 24	445 435	+17	451	+ + + +11	460	
2	Сухой остаток крови	-+	28 25	449 432	\int_{-18}^{-18}	431	+		
3	Глютатион общий	+	23 24	450 429.8	+21	452	- - -14	429	
4	Глютатион восстанов- ленный	+	24 23	448 430	\int_{-21}^{-21}	429.7)-	120	
5	Общий белок сыворотки (по Robertson'y)	+	14 13	442 434	8	438			
6	% глобулинов сыворотки	+	14 13	438.7 437.6	5	417			

плюс-вариантов по концентрации красной крови встречаются минус-варианты по другим, связанным коррелятивно с живым весом показателям, например по глютатиону, белкам и т. д. Плюс-варианты по двум показателям, например по относительному объему форменных элементов и по сухому остатку крови, отличаются от минус-вариантов на 20 кг по среднему живому весу. При учете 4 показателей разница в живом весе между плюс- и минус-вариантами достигает больше 30 кг. Иными словами, на основании комплекса физиологических показателей в пределах породы у животных можно установить индивидуальные отклонения в деятельности основных систем организма, обусловливающие различия в скорости роста и скороспелости (или по меньшей мере коррелированные с ними). Факт индивидуальных различий дает основание надеяться на проявление и усиление их в потомстве при создании необходимых условий и при систематическом подборе соответствующих родителей.

В пределах породы имеется дифференциация животных по типам сложения. В табл. 2 представлены средние данные по ряду показателей крови у плюс- и минус-вариантов по индексу эйризомии. Физиологические различия между эйризомными и лептозомными животными в пределах породы не велики, но относительно устойчивы. Во всех сравниваемых группах у лептозомных животных имеется несколько повышенная концентрация красной крови, а у эйризомных—увеличенное содержание глютатиона крови и глобулинов сыворотки. Последнее обстоятельство указывает на то, что эйризомные животные повидимому несколько скороспелее

лептозомных.

В табл. З представлены физиологические различия между отдельными линиями английских скаковых лошадей. Лошади из линии «Гетмана» характеризуются наиболее высокими показателями за исключением индекса глютатиона и индекса оседания эритроцитов. Между линиями «Бримстона» и «Тагора» различия менее выражены.

Таким образом в пределах породы чистокровных английских скаковых лошадей имеются физиолого-биохимические различия, связанные с раз-

личиями в происхождении, типах сложения, роста и размерах.

Таблица 2

		Жеребцы	ы 3 лет	Кобылы 2	л 2 лет	Кобыл	Кобылы 3 лет
Показатели		+		+	1	+	1
Относительный объем фор- менных элементов крови	n M lim	13 62.7 47.5—77.5	12 64.4 50—77.5	23 55.6 42.5—71	23 57.4 45—70	10 55.5 49—61.2	10 62.3 51—72.5
Сухой остаток крови	n M lim	14 23.3 21.4—25.7	11 23.6 20.1—25.5	23 21.1 17.4—24.4	22 21.3 18.3—24.4	10 22.1 20.3—23.3	10 22.6 20.8—23.6
Общий глютатион	n M lim	14 70.5 56.13—84.33	13 64.4 30.98—86.81	23 63.7 42.02—75.76	22 63.5 34.36—78.46	10 68.03 54.26—78.99	63.88 42.02—73.53
Восстановленный глютатион	n M M	14 50.0 . 40.18—65.03	13 47.6 29.14—61.35	23 54.4 36.19—68.40	22 52.5 26.07—67.30	10 53.49 43.87—63.80	9 45.19 30.37—60.98
Глобулины	n M lim	5 3.12 2.67—3.42	2.53—3.00	17 2.19 1.20—3.54	15 1.97 0.68—3.33	2.78 2.49—3.67	3 2.57 2.41—2.80

	Линия «Бримстона»		Линия «Тагора»		Линия «Гетмана»	
Показатели	n = 10	n = 9	n=12	n = 13	n = 5	
Частота дыхания	11.7 41 54.4 21.5 6.25 11.6 62.26 16.8 115.2 6.64 1.28 0.50	12.2 41 55.7 20.2 6.36 11.4 58.62 14.1 106.3 6.05 1.21 0.47	12.5 40 55.8 22 6.87 12.2 60.55 17.7 108.8 6.49 1.33 0.44	13.1 42.5 60.2 21.04 5.96 10.1 61.65 18.4 108.4 6.52 1.26 0.35	16.4 48.6 61.3 8.16 13.42 66.56 20.88 109.6 6.71 1.39 0.31	

В ы в о д ы. 1. Одновозрастные животные с максимальными показателями по концентрации красной крови, белкам сыворотки, содержанию глобулинов сыворотки и концентрации глютатиона крови являются более крупными в сравнении с минус-вариантами по перечисленным показа-

2. Концентрация общего и восстановленного глютатиона крови и содержание глобулинов в сыворотке крови оказываются в среднем повышенными у эйризомных лошадей в сравнении с лептозомными. Концентрация красной крови (относительный объем форменных элементов и сухой остаток), содержание окисленного глютатиона крови и альбуминов сыворотки в среднем выше у лептозомных лошадей.

3. В пределах породы отмечены физиологические различия между

линиями лошадей по их происхождению.

Отдел генетики животных Института генетики. Академия Наук СССР.

Поступило 8 IV 1939.