Доклады Академии Наук СССР 1939. том XXIII, № 5

MATEMATHKA

с. А. ЧУНИХИН

о центре подгрупп силова у простых групп

(Представлено академиком О. Ю. Шмидтом 17 III 1939)

1. Мною была раньше доказана (1) следующая теорема:

Теорема 1. Пусть \mathfrak{F} —подгруппа индекса k группы \mathfrak{F} и пусть \mathfrak{F} —подгруппа \mathfrak{F} , содержащая коммутант группы \mathfrak{F} . Пусть \mathfrak{F} \mathfrak{F} содержится элемент A, не входящий \mathfrak{F} \mathfrak{F} и такой, что при любом целом \mathfrak{F} все элементы \mathfrak{F} , сопряженные \mathfrak{F} \mathfrak{F}

Как было показано L. Weisner'ом и мною $(^2, ^3)$, эта теорема может быть использована при исследованиях свойств простых групп. Даль-

нейшие приложения этой теоремы даются в настоящей статье.

2. Пусть \mathfrak{P} —одна из подгрупп Силова порядка $p^{\mathfrak{d}}$ группы \mathfrak{G} порядка $p^{\mathfrak{d}}n$ и пусть ρ — наименьшее число, для которого $p^{\mathfrak{d}}$ —1 и n имеют отличного от единицы общего делителя. Пусть группа \mathfrak{S} порядка $p^{\mathfrak{d}}$ является центром \mathfrak{P} . Пусть фундаментальный базис группы \mathfrak{S} содержит лишь следующие элементы:

множество (A_1)	из n_1	элементов	порядка p^{a_1} ,
множество (A_2)	из n_2	элементов	порядка p^{a_2} ,
• • • • • • • • •			
множество (A_s)	из n _s	элементов	\dots порядка p^{a_s} .

Пусть при этом $a_1 > a_2 > a_3 > ... > a_s$ и $a_{s+1} = 0$.

Введем следующие обозначения:

- 1) если $1 < i \leqslant s$, то τ_i равно наименьшему из чисел $\alpha_{i-1} \alpha_i$ и $\alpha_i \alpha_{i+1}$,
 - 2) если i = 1, то $\tau_1 = \alpha_1 \alpha_2$,
 - 3) если s = 1, то $\tau_1 = \alpha_1$.

Докажем следующую лемму:

 Π емма. Для кажедого τ_i существуют две характеристические подгруппы:

 $\mathfrak{A}_i \supset \mathfrak{B}_i$

группы $\mathfrak S$ такие, что факторгруппа $\frac{\mathfrak A_i}{\mathfrak B_i}$ является абелевой группой порядка $p^{\mathbf n_i \mathbf r_i}$ и типа $(p^{\mathbf r_i}, p^{\mathbf r_i}, \dots, p^{\mathbf r_i})$. Основные моменты доказательства состоят в следующем [ср. Burnside (4)]. Рассмотрим характеристиче-

ские подгруппы **M**, **N**, **Y** группы **©**, образованные следующим способом:

 \mathfrak{M} порождается всеми элементами \mathfrak{S} , порядки которых делят p^{a_i} , \mathfrak{N} порождается всеми элементами \mathfrak{S} , порядки которых делят $p^{a_i-\tau_i}$, \mathfrak{T} порождается всеми элементами \mathfrak{S} , возвышенными в степень p^{τ_i} .

Фундаментальный базис \mathfrak{M} состоит из элементов $(A_j^{p^{a_j-a_i}}), j=1,2,...$... , i-1, и из элементов $(A_j), j=i, i+1,...,s$.

Фундаментальный базис \mathfrak{R} состоит из элементов $(A_j^{p^{a_j-a_i+\tau_i}}),\ j=1,2,\ldots$, i, и из элементов $(A_j),\ j=i+1,\ i+2,\ldots,s.$

Фундаментальный базис Γ состоит из элементов $(A_i^{p^{-i}}),\ j=1,2,3,\ldots,s$. Далее фундаментальный базис группы $\Gamma \mathfrak{R}$ будет, состоять из элементов вида:

$$(A_j^{p^{\tau_i}}), j=1, 2, ..., i, m (A_j), j=i+1, i+2, ..., s.$$

Рассмотрим фундаментальный базис общего наибольшего делителя \mathfrak{D} групп \mathfrak{M} и \mathfrak{M} . Так как при j < i имеем $\alpha_j - \alpha_i \geqslant \alpha_{i+1} - \alpha_i \geqslant \tau_i$, то фундаментальный базис \mathfrak{D} состоит из элементов: $(A_j^{p^{\alpha_j - \alpha_i}})$ при j < i, $(A_i^{p^{\tau_i}})$, и элементов (A_j) при j > i.

Так как \mathfrak{M} , \mathfrak{N} и \mathfrak{I} — характеристические подгруппы \mathfrak{S} , то \mathfrak{D} также характеристическая подгруппа. Ясно, что $\mathfrak{M} \supset \mathfrak{D}$ и что дополнительная группа $\frac{\mathfrak{M}}{\mathfrak{D}}$ — порядка $p^{n_i \cdot i}$ и типа $(p^{\cdot i}, p^{\cdot i}, \dots, p^{\cdot i})$.

3. Теорема 2. Если $\mathfrak{G}-$ простая группа, то из неравенства $n_i<$ р следует, что $\tau_i\leqslant \delta-\eta.$

Предположим, что существует такое i, для которого выполнено неравенство $n_i < \rho$. Согласно вышеприведенной лемме тогда существуют две характеристические подгруппы \mathfrak{A}_i и \mathfrak{B}_i группы \mathfrak{S} такие, что $\mathfrak{A}_i \supset \mathfrak{B}_i$ и факторгруппа $\frac{\mathfrak{A}_i}{\mathfrak{B}_i}$ абелева порядка $p^{n_i \cdot \cdot_i}$ и типа $(p^{\cdot \cdot_i}, p^{\cdot \cdot_i}, \dots, p^{\cdot \cdot_i})$.

Рассмотрим разложение \mathfrak{A}_i по \mathfrak{B}_i :

$$\mathfrak{A}_i = \mathfrak{B}_i + \mathfrak{B}_i B_2 + \dots + \mathfrak{B}_i B_b,$$

где $b=p^{n_i\tau_i}$.

Пусть B—один из элементов B_2 , B_3 , ..., B_b . Известно (5), что все элементы \mathfrak{S} , сопряженные с B^{λ} в группе \mathfrak{S} , будут уже сопряжены в нормализаторе (по отношению ко всей группе \mathfrak{S}) $\mathfrak{B}_{\mathfrak{P}}$ группы \mathfrak{P} . Группа \mathfrak{A}_i , как характеристическая подгруппа \mathfrak{S} , должна быть в $\mathfrak{B}_{\mathfrak{P}}$ инвариантной. Отсюда следует, что все элементы \mathfrak{S} , сопряженные с B^{λ} в \mathfrak{S} , уже содержатся в \mathfrak{A}_i , т. е. из

$$G^{-1}B^{\lambda}G \subset \mathfrak{S}; \ G \subset \mathfrak{S}$$

следует, что

$$G^{-1}B^{\boldsymbol{\lambda}}G=C^{-1}B^{\boldsymbol{\lambda}}C\;;\quad C\subset\mathfrak{B}_{\mathfrak{P}};\quad C^{-1}B^{\boldsymbol{\lambda}}C\subset\mathfrak{A}_{i}.$$

Преобразуем все элементы $\frac{\mathfrak{A}_i}{\mathfrak{B}_i}$ с помощью элемента C и мы получим некоторый автоморфизм группы $\frac{\mathfrak{A}_i}{\mathfrak{B}_i}$. Порядок элемента C и число

$$(p^{n_i}-1)(p^{n_i-1}-1)\dots(p-1)$$

взаимно просты, так как $n_i < \rho$. Отсюда следует, что полученный автоморфизм должен быть тождественным автоморфизмом, т. е.

$$C^{-1}\mathfrak{B}_{i}B^{\lambda}C=\mathfrak{B}_{i}B^{\lambda}$$

или

$$\mathfrak{B}_{i}C^{-1}B^{\lambda}C = \mathfrak{B}_{i}B^{\lambda}.$$

Отсюда следует, что все элементы \mathfrak{S} , сопряженные с B^{λ} в \mathfrak{G} , входят в систему $\mathfrak{B}_i B^{\lambda}$. Если теперь предположить, что $\tau_i > \delta - \eta$, то согласно теореме 1 (положив $\mathfrak{S} = \mathfrak{S}$ и $\mathfrak{K} = \mathfrak{B}_i$) получим, что \mathfrak{G} не может быть простой. Таким образом теорема 2 доказана.

4. Отметим следующий частный случай предыдущей теоремы. Если $\mathfrak{P}-$ абелева группа, то $\delta=\eta$, и так как все $\mathfrak{r}_i>0$, то следовательно $n_i\geqslant \rho$. Получается теорема:

Теорема 3. Пусть $\mathfrak P$ порядка p^{δ} является абелевой подгруппой Силова простой группы $\mathfrak P$ порядка p^{δ} п. Пусть $\mathfrak P$ —наименьшее число, для которого $p^{\varrho}-1$ и п имеют отличный от единицы общий делитель. Тогда число элементов фундаментального базиса $\mathfrak P$, имеющих один и тот же порядок, не может быть меньше $\mathfrak P$.

Из теоремы 3 следует

Теорема 4. Пусть \mathfrak{P} удовлетворяет условиям предыдущей теоремы. Тогда порядки элементоз группы \mathfrak{P} не превосходят $\sqrt[p]{p^5}$.

5. Теорема 4 является известным уточнением ранее полученной мною (6) теоремы:

Пусть \mathfrak{G} —простая группа порядка p^{δ} п (p—простое число, n не делится на p, числа n и p-1 взаимно просты). Пусть \mathfrak{P} —одна из подгрупп порядка p^{δ} . Тогда порядки элементов центра группы \mathfrak{P} не превосходят $\sqrt{p^{\delta}}$.

Поступило 23 III 1939.

ИИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Serge Tchounikhin, Math. Annalen, 112, 02 (1935); см. также S. A. Tchounikhin, Rec. Math. de Moscou, 5 (47), N 3 (1939). ² S. A. Tchounikhin. C. R. de l'Acad. des Sci. de l'URSS, XX, N 2—3 (1938). ³ Z. Weisner, Duke Math. Journ., 2, N 4 (1936). ⁴ W. Burnside, Theory of Groups of Finite Order, sec. ed., p. 108—109. ⁵ W. Burnside, loc. cit., p. 155. ⁶ Serge Tchounikhin, Math. Annalen, 112, 95 (1935).