УДК 536.2.01

ДИНАМИЧЕСКИЕ СВОЙСТВА КОНТАКТНОГО ТЕПЛООБМЕНА В ДВУХСЛОЙНОЙ МЕТАЛЛИЧЕСКОЙ ПЛАСТИНЕ

О. Н. ШАБЛОВСКИЙ⁺, Д. Г. КРОЛЬ⁻

Гомельский государственный технический университет им. П.О. Сухого, пр. Октября 48, 246746, г. Гомель, Беларусь, e-mail: shabl@gstu.gomel.by

Изучаются нелинейные тепловые свойства двухслойной металлической пластины при циклическом температурном воздействии на границу образца. Выполнен подробный теоретический анализ асимметричных свойств контактного теплообмена на границе слоев в режимах «нагрев – охлаждение» и «охлаждение – нагрев». Представлены результаты исследования систем Fe-Mo и Fe-V.

Введение

Двухслойные и многослойные конструкции широко распространены в технике и лабораторной физической практике [1, 2]. Теплофизические аспекты энергетического воздействия на металлы имеют большое значение в различных технологических процессах [3]. Будем изучать нестационарные свойства контактного теплообмена в двухслойной металлической пластине, обращая внимание на следующие явления: зависимость теплофизических свойств металлов от температуры; динамический тепловой гистерезис (ДТГ) при циклическом температурном воздействии на образец; асимметрия теплового потока.

Явление ДТГ при импульсном нагреве однослойной пластины изучено в [4] на основе классической модели теплопроводности Фурье. Получены сведения о том, что в плоскости «градиент температуры – тепловой поток» существует петля ДТГ, если: 1) поверхностный источник энергии $q_0(t)$ немонотонно зависит от времени; 2) тепловой процесс происходит в широком интервале температур, таком, что эффективным образом проявляет себя температурная зависимость $\lambda(T)$ коэффициента теплопроводности. Для локальнонеравновесного теплопереноса основные закономерности гистерезисных процессов изучены в [5].

Явление асимметрии теплового потока изучалось экспериментально на двухслойных образцах (латунь, сталь, железо армко, электрокорунд) при стационарных условиях [6]. Эффект выражается в неравенстве $q_l/q_r \neq 1$, где q_l – тепловой поток, проходящий через двухслойную пластину в направлении от первого (левого) слоя ко второму (правому);

 q_r – тепловой поток, проходящий через пластину от второго слоя к первому. Опыты проводились в диапазоне температур от комнатной до 673 К и при разности температур на границах образца до 500 К. Максимальное значение q_l/q_r составило 1,4.

Это явление назовем асимметрией 1-го типа. Свойства асимметрии-1 будем обсуждать для двух серий расчетов: 1) выполняется перестановка металлов, наполняющих слои разной толщины (толщины слоев не переставляются); 2) перестановка толщин слоев вместе с наполняющими их металлами. Понятие об асимметрии 2-го типа введем для ситуации, когда металлы не переставляются, а толщины слоев зафиксированы. В этом случае асимметрия обусловлена последовательностью термических воздействий, а именно: в одном случае это «нагрев–охлаждение», в другом – «охлаждение–нагрев».

Наша цель состоит в том, чтобы исследовать: 1) асимметричные свойства контактного теплообмена; 2) качественные и количественные свойства поведения петель ДТГ в плоскостях «градиент температуры – тепловой поток», «градиент температуры – производство энтропии»; 3) влияние нелинейных свойств коэффициента теплопроводности (в первую очередь – производной $d\lambda/dT$) на параметры асимметрии процесса.

Постановка и решение задачи

Уравнение энергии и закон Фурье для теплового потока имеют вид:

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0 \quad , \quad q = -\frac{\partial \Lambda}{\partial x} \quad , \quad t \ge 0 \; ; \tag{1}$$

⁺ Автор, с которым следует вести переписку.

$$u(T) = \int_{0}^{T} c(T) dT , \quad \Lambda(T) = \int_{0}^{T} \lambda(T) dT ,$$

где х — декартова координата; t — время; T — температура; q — удельный тепловой поток; λ — коэффициент теплопроводности; c — объемная теплоемкость. Искомыми функциями являются температура и тепловой поток в двух контактирующих областях. Первый слой: $T = T^{(1)}(x, t), q = q^{(1)}(x, t), x \in [0, h].$ Второй слой: $T = T^{(2)}(x, t), q = q^{(2)}(x, t), x \in [h_1, h].$ Толщина образца равна $h = h_1 + h_2$. Условия идеального теплового контакта:

$$x = h_1, T^{(1)} = T^{(2)}, q^{(1)} = q^{(2)}.$$
 (2)

Правая граница двухслойного образца теплоизолирована:

$$x = h, q^{(2)}(h, t) = 0.$$
(3)

Температура $T_0(t)$ характеризует термическое воздействие на левой границе:

$$x = 0, T^{(1)}(0, t) = T_0(t).$$
(4)

Начальная температура образца однородная по координате: -

$$t = 0, T(x, 0) = T^{\circ} \equiv \text{const},$$
(5)

причем $T_0(0) = T^\circ$.

Теплофизические свойства металлов аппроксимируются полиномами третьей степени с постоянными коэффициентами:

$$c = c_0 + c_1 T + c_2 T^2 + c_3 T^3; \ \lambda = \lambda_0 + \lambda_1 T + \lambda_2 T^2 + \lambda_3 T^3,$$

$$T \in [T', T''].$$
(6)

Процессы нагрева и охлаждения рассматриваются в интервалах температур, для которых фазовые превращения не происходят. Построение аппроксимирующих полиномов выполняется на основе справочных данных [7]. Производство энтропии подсчитываем по формуле [8]:

$$\sigma = q \frac{\partial}{\partial x} \left(\frac{1}{T} \right).$$

Зависимость $T_0(t)$ возьмем в виде, характерном для термоциклирования:

$$T_0(t) = T^0 + \Theta \sin(mt) > 0 \quad \text{при}$$

 $t \in [0, t_j]; \quad \Theta, m - \text{const.}$
(7)

$$T_0(t) \equiv T^0 \text{ при } t \in [t_j, t^0].$$

Здесь $t_1 = 2\pi/m$ — период колебаний; $t_j = jt_1$; $j \ge 1$ — целое число; t° — время установления (стабилизации) теплового процесса: при $t = t^\circ$ петля ДТГ становится замкнутой. Представленная далее в таблицах информация относится к основному варианту j = 1. Примеры расчетов для j > 1комментируются отдельно. В режиме «нагрев — охлаждение» берем $\Theta > 0$, т. е. $T_0(t) \in [T^\circ - \Theta, T^\circ + \Theta]$, и соответствующие параметры процесса отмечаем двойным нижним индексом + -; в режиме «охлаждение – нагрев» берем $\Theta < 0$, т. е. $T_0(t) \in [T^\circ + \Theta, T^\circ - \Theta]$, и применяем индекс - +.

Численные расчеты проводятся в безразмерных величинах. При обезразмеривании применяются масштабы величин (они отмечены нижним индексом *b*), обеспечивающие инвариантность размерной и безразмерной форм записи: $\lambda_b = x_b^2 c_b/t_b$, $q_b = \lambda_b T_b/x_b$ и т. д.

Решение краевой задачи (1)–(5) выполняется численным методом интегральных соотношений А. А. Дородницына; алгоритм построения расчетной схемы изложен в [4].

Результаты и обсуждение

При обработке результатов расчетов применяем следующие критерии:

безразмерный градиент температуры

$$g=\frac{h}{T^0}\left(\frac{\partial T}{\partial x}\right);$$

безразмерный тепловой поток

$$Q = \frac{q(x,t)h}{T^0 \lambda(T^0)};$$

безразмерное производство энтропии

$$S = \frac{\sigma(x,t)}{\sigma^0}, \quad \sigma^0 = \lambda(T^0)/h^2$$

Параметры асимметрии 1-го типа (ПА-1) такие:

ПА-1 теплового потока на левой границе

$$4_q^{(0)} = \frac{(q_0)_{M_1 - M_2}^{\max}}{(q_0)_{M_2 - M_1}^{\max}}; \quad \overline{A}_q^{(0)} = \frac{(q_0)_{M_1 - M_2}^{\min}}{(q_0)_{M_2 - M_1}^{\min}};$$

ПА-1 температуры в зоне контакта

$$A_{T}^{(z)} = \frac{(T_z)_{M_1 - M_2}^{\max}}{(T_z)_{M_2 - M_1}^{\max}}; \quad \overline{A}_{T}^{(z)} = \frac{(T_z)_{M_1 - M_2}^{\min}}{(T_z)_{M_1 - M_1}^{\min}};$$

ПА-1 теплового потока в зоне контакта

$$A_q^{(z)} = \frac{(q_z)_{M_1 - M_2}^{\max}}{(q_z)_{M_2 - M_1}^{\max}}; \quad \overline{A}_q^{(z)} = \frac{(q_z)_{M_1 - M_2}^{\min}}{(q_z)_{M_2 - M_1}^{\min}};$$

ПА-1 температуры на правой границе $x_w = h$

$$A_{T}^{(w)} = \frac{(T_{w})_{M_{1}-M_{2}}^{\max}}{(T_{w})_{M_{2}-M_{1}}^{\max}}; \quad \overline{A}_{T}^{(w)} = \frac{(T_{w})_{M_{1}-M_{2}}^{\min}}{(T_{w})_{M_{2}-M_{1}}^{\min}}$$

ПА-1 производства энтропии в зоне контакта

$$A_{\sigma}^{(z)} = \frac{F_{M_1 - M_2}^{(g,S)}}{F_{M_2 - M_1}^{(g,S)}};$$

ПА-1 динамического теплового гистерезиса в зоне контакта

$$A_G^{(z)} = \frac{F_{M_1 - M_2}^{(g,Q)}}{F_{M_2 - M_1}^{(g,Q)}}$$

Параметры асимметрии 2-го типа (ПА-2) та-кие:

ПА-2 теплового потока на левой границе

$$B_q^{(0)} = \frac{(q_0)_{+-}^{\max}}{(q_0)_{++}^{\max}}; \quad \overline{B}_q^{(0)} = \frac{(\overline{q}_0)_{+-}^{\min}}{(q_0)_{++}^{\min}};$$

ПА-2 температуры в зоне контакта

$$B_T^{(z)} = \frac{(T_z)_{+-}^{\max}}{(T_z)_{++}^{\max}}; \quad \overline{B}_T^{(z)} = \frac{(T_z)_{+-}^{\min}}{(T_z)_{++}^{\min}};$$

ПА-2 теплового потока в зоне контакта

$$B_q^{(z)} = \frac{(q_z)_{+-}^{\max}}{(q_z)_{-+}^{\max}}; \quad \overline{B}_q^{(z)} = \frac{(q_z)_{+-}^{\min}}{(q_z)_{-+}^{\min}}$$

ПА-2 температуры на правой границе $x_w = h$

$$B_T^{(w)} = \frac{(T_w)_{+-}^{\max}}{(T_w)_{-+}^{\max}}; \quad \overline{B}_T^{(w)} = \frac{(T_w)_{+-}^{\min}}{(T_w)_{-+}^{\min}};$$

ПА-2 производства энтропии в зоне контакта

$$B_{\sigma}^{(z)} = \frac{F_{+-}^{(g,S)}}{F_{-+}^{(g,S)}};$$

ПА-2 динамического теплового гистерезиса в зоне контакта

$$B_G^{(z)} = \frac{F_{+-}^{(g,Q)}}{F_{-+}^{(g,Q)}} \,.$$

Индексом z отмечены значения функций при $x = h_1$. В качестве M_1, M_2 применяем химические символы металлов; расположение индексов $M_1 - M_2$ и $M_2 - M_1$ указывает на расположение металлических слоев до и после перестановки. Полагаем, что термическое воздействие всегда проис-

ходит на левой границе образца. Буквами $F_{M_1-M_2}^{(g,S)}$, $F_{M_1-M_2}^{(g,Q)}$ и т.д. обозначаем площади петель ДТГ в плоскостях «градиент температуры – производство энтропии» и «градиент температуры – тепловой поток». При вычислении $A_q^{(0)}$, $A_T^{(z)}$, $A_q^{(z)}$, $A_T^{(w)}$ и $\overline{A}_q^{(0)}$, $\overline{A}_T^{(z)}$, $\overline{A}_q^{(z)}$, $\overline{A}_T^{(w)}$ применяем максимальные и, соответственно, минимальные достигаемые в данном процессе значения функций $q_0 = q(0,t)$, $T_z = T(h_1,t)$, $q_z = q(h_1,t)$, $T_w = T(h,t)$, $t \in [0,t_1]$. Для ПА-2 структура обозначений такая же.

Асимметричные свойства тепловых процессов выражены тем сильнее, чем больше ПА-1, ПА-2 отличаются от единицы.

Рассматриваем два варианта: 1) в каждом слое $d\lambda/dT < 0$; в качестве примера берем железо и молибден; 2) в одном слое $d\lambda/dT < 0$, а в другом $d\lambda/dT > 0$; в качестве примера берем железо и ванадий. Построение аппроксимирующих полиномов вида (6) было выполнено в следующих температурных интервалах: Fe - [300, 1400]; Мо -[300, 2600]; V - 300, 2000]; значения температуры указаны в кельвинах. При вычислении Q, S берем $\lambda(T^0) = \lambda_{Fe}(T^0)$. Для всех рассмотренных вариан-Tob $h = 1 \cdot 10^{-2} \,\mathrm{m}$; $T_b = 100 \,\mathrm{K}$, $q_b = 1 \cdot 10^6 \,\mathrm{Bt/m^2}$, $T^{0} = 650 \,\mathrm{K}$, $\Theta = 350 \,\mathrm{K}$, $m = \pi c^{-1}$, $t^{0} = 5 \,\mathrm{c}$. Говоря о зависимости параметров асимметрии от отношения толщин слоев, подразумеваем далее, что h_1/h_2 растет от 1/9 до 9. Примеры типичных петель ДТГ в зоне контакта даны на рисунке.

Система Fe-Мо

Пусть в каждом варианте расчета толшины h_1 , h_2 фиксированные, и выполняется перестановка металлов, заполняющих эти слои. Основные свойства ПА-1 в зоне контакта видны из табл. 1: $A_T^{(z)}$ имеет при $h_1/h_2 \cong 3/7$ слабо выраженный минимум, $\overline{A}_T^{(z)}$ – максимум; отчетливо выражена асимметрия теплового потока и асимметрия гистерезисных процес-

Гистерезисная зависимость производства энтропии от градиента температуры на границе слоев для системы Fe-Mo: (a) – нагрев-охлаждение, (δ) – охлаждение-нагрев. Стрелка указывает движение вдоль линии с течением времени

Нагрев-охлаждение															
$h_1 \cdot 10^2$,	$h_{2} \cdot 10^{2}$,	Fe-Mo						Fe–V							
M	M	$A_T^{(z)}$	$\overline{A}_T^{(z)}$	$A_q^{(z)}$	$\overline{\hat{A}}_{q}^{(z)}$	$A_{\alpha}^{(z)}$	$A_G^{(z)}$	$A_{q}^{(0)}$	$\overline{A}_{q}^{(0)}$	$A_q^{(z)}$	$\overline{A}_q^{(z)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$		
0.10	0.90	0.9038	1.160	0.8077	1.0314	0.4116	0.5772	1.0505	1.2170	0.7535	0.9806	1.402	0.993		
0.20	0.80	0.8738	1.230	0.6196	0.8571	0.3175	0.3437	1.2387	1.6043	0.7602	1.2502	2.748	1.646		
0.30	0.70	0.8655	1.241	0.5052	0.7138	0.1601	0.1917	1.2873	1.7100	0.7644	1.3856	3.428	1.823		
0.40	0.60	0.868	1.221	0.4211	0.5903	0.0814	0.1183	1.2986	1.6956	0.7739	1.4403	3.792	1.909		
0.50	0.50	0.8759	1.183	0.3504	0.477	0.0384	0.0662	1.2993	1.6670	0.7871	1.4609	3.579	1.705		
0.60	0.40	0.8858	1.137	0.2866	0.3713	0.0181	0.0493	1.3037	1.6462	0.7982	1.4858	2.500	1.607		
0.70	0.30	0.8936	1.099	0.2281	0.2765	0.0074	0.0301	1.3061	1.6388	0.8011	1.5100	1.591	1.187		
0.80	0.20	0.8932	1.091	0.1786	0.2008	0.0027	0.0187	1.3108	1.6351	0.7787	1.5031	0.909	0.968		
0.90	0.10	0.8806	1.114	0.1563	0.1546	0.0017	0.0109	1.2958	1.6457	0.7032	1.3594	0.567	0.648		
	Охлажденис-нагрев														
$h_1 \cdot 10^2$,	$h_2 \cdot 10^2$,	Fe – Mo							Fe - V						
M	M	$A_T^{(z)}$	$\overline{A}_T^{(z)}$	$A_q^{(z)}$	$\overline{A}_q^{(z)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$	$A_q^{(0)}$ $\overline{A}_q^{(0)}$ $A_q^{(z)}$ $\overline{A}_q^{(z)}$ $A_{\sigma}^{(z)}$					$A_G^{(z)}$		
0.10	0.90	0.8734	1.1195	0.8961	0.9873	0.6223	0.5321	1.0379	1.2098	0.769	0.9577	0.938	0.831		
0.20	0.80	0.8331	1.1798	0.6954	0.841	0.2889	0.3235	1.3071	1.5804	0.8174	1.2089	1.735	1.298		
0.30	0.70	0.8242	1.1982	0.5651	0.7185	0.1489	0.2077	1.4109	1.6813	0.8418	1.3454	2.319	1.624		
0.40	0.60	0.8314	1.1928	0.4626	0.6116	0.0844	0.1265	1.4086	1.6941	0.8623	1.4166	2.847	1.719		
0.50	0.50	0.8503	1.1746	0.3726	0.5134	0.0415	0.0689	1.3814	1.6971	0.8926	1.4546	2.875	1.893		
0.60	0.40	0.8793	1.1535	0.2909	0.4204	0.0211	0.0490	1.3623	1.6957	0.9356	1.4813	1.846	1.864		
0.70	0.30	0.9029	1.1404	0.2226	0.3349	0.0173	0.0309	1.3532	1.6983	0.9800	1.4977	1.167	1.617		
0.80	0.20	0.9107	1.1486	0.1687	0.2622	0.0158	0.0250	1.3536	1.6969	0.987	1.4822	0.979	1.273		
0.90	0.10	0.9001	1.1793	0.129	0.2213	0.0114	0.0218	1.3557	1.6819	0.8956	1.3659	0.565	1.134		

Таблица 1. Влияние перестановки металлов на ПА-1 в зоне контакта при фиксированных в каждом варианте толщинах слоев

сов. Укажем поведение ПА-1 на левой и правой границах образца по мере роста h_1/h_2 .

Режим «нагрев-охлаждение»: $A_q^{(0)}$ убывает от 0.9511 до 0.801; $\overline{A}_q^{(0)}$ убывает от 1.079 до 0.841; для температуры на правой границе $A_T^{(w)}$ убывает от 1.1017 до 0.8816, $\overline{A}_T^{(w)}$ растет от 0.8979 до 1.1137. Тепловое состояние контакта: $(T_z)_{\text{Fe-Mo}}^{\text{max}} \in [6.8647, 8.6235], (q_z)_{\text{Fe-Mo}}^{\text{max}} \in [0.1577, 5.2757].$

Режим «охлаждение – нагрев»: на левой границе монотонно убывает $A_q^{(0)}$ от 1.0035 до 0.7857; $\overline{A}_q^{(0)}$ – от 1.0451 до 0.8785, $A_T^{(w)}$ убывает от 1.0682 до 0.9008, $\overline{A}_T^{(w)}$ возрастает от 0.8615 до 1.1785. Тепловое состояние контакта: $(T_z)_{\text{Fe-Mo}}^{\text{max}} \in [6.5031, 8.2564],$ $(q_z)_{\text{Fe-Mo}}^{\text{max}} \in [0.1750, 7.2489].$

При перестановке слоев металлов наблюдается очень сильное количественное проявление асимметрии-1 в зоне контакта, см. таблицу 2. ПА-1 для гистерезисных процессов изменяются в широком диапазоне. Обращает на себя внимание усиление асимметрии температуры в сравнении с данными в табл. 1 (см. $A_T^{(z)}$ и $\overline{A}_T^{(z)}$). На левой и правой границах образца асимметрия проявляется незначительно. Об этом говорят следующие результаты.

Режим «нагрев-охлаждение»: $A_q^{(0)}$ немонотонно изменяется от 0.8343 до 0.9131, при $h_1/h_2 \cong 3/7$ имеет минимум, равный 0.7909; $\overline{A}_q^{(0)} \cong 0.88$; $A_T^{(w)} \cong 0.98$; $\overline{A}_T^{(w)} \cong 1.0$. Тепловое состояние контакта: $(T_z)_{\text{Mo-Fe}}^{\text{max}} \in [7.7953, 9.5410],$ $(q_z)_{\text{Mo-Fe}}^{\text{max}} \in [1.009, 6.5317].$

Режим «охлаждение-нагрев»: $A_q^{(0)}$ немонотонно изменяется от 0.8387 до 0.9401, при $h_1/h_2 \cong 35/65$ имеет минимум, равный 0.7778; $\overline{A}_q^{(0)}$ немонотонно изменяется от 0.9421 до 0.9748, при $h_1/h_2 \cong 35/65$ имеет минимум, равный 0.8785; $A_T^{(w)} \cong 0.97$; $\overline{A}_T^{(w)} \cong 1.0$. Тепловое состояние контакта: $(T_z)_{\text{Mo-Fe}}^{\text{max}} \in [1.3561, 8,0893]$.

Для асимметрии 2-го типа результаты представлены в таблице 3. Отметим здесь немонотонность параметров $B_q^{(0)}, \overline{B}_q^{(0)}, B_q^{(z)}, B_{\sigma}^{(z)}$. Существенно, что асимметрия-2 для энтропийных и гистерезисных процессов чутко реагирует на перестановку слоев металлов, см. $B_{\sigma}^{(z)}, B_{G}^{(z)}$ для систем Fe-Mo и Mo-Fe. По отношению к температуре асимметрия-2 практически отсутствует: $B_T^{(z)} \cong 1.0$; $\overline{B}_T^{(z)} \cong 1.0$; $\overline{B}_T^{(w)} \cong 1.0$; $\overline{B}_T^{(w)} \cong 1.0$. Например, для системы Mo-Fe имеем наибольшее значение $\overline{B}_T^{(z)} = 1.1168$ при $h_1/h_2 = 9$.

Таким образом, если $d\lambda/dT < 0$ в обоих слоях металлов, то асимметрия теплопереноса сосредоточена в зоне контакта и хорошо проявляется в режимах «нагрев – охлаждение» и «охлаждение – на-грев».

Нагрев – охлаждение																
$h_1 \cdot 10^2$,	$h_2 \cdot 10^2$,	Fe-Mo						Fe-V								
М	М	$A_T^{(z)}$	$\overline{A}_{T}^{(z)}$	$A_q^{(z)}$	$\overline{A}_{q}^{(z)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$	$A_{T}^{(z)}$	$\overline{A}_T^{(z)}$	$A_q^{(z)}$	$\overline{A}_q^{(z)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$			
0.10	0.90	1.1062	0.7268	5.2286	5.7930	221.91	53.384	1.3084	0.5548	16.567	28.769	23451	795 77			
0.20	0.80	1.0317	0.8553	1.9631	2.4074	19.221	7.8742	1.2137	0.6539	6.0761	12.284	2148.6	190.48			
0.30	0.70	0.9738	0.9638	1.0259	1.3404	2.2770	1.4218	1.1385	0.7526	2.8607	5.9463	283.63	57 437			
0.40	0.60	0.9223	1.0729	0.5931	0.8023	0.3084	0.3230	1.0745	0.8391	1.4771	2.9513	38.421	11 321			
0.50	0.50	0.8759	1.1833	0.3505	0.4770	0.0384	0.0662	1.0176	0.9178	0.7870	1.4606	3 5789	1 7049			
0.60	0.40	0.8337	1.2937	0.2034	0.2731	0.0047	0.0181	0.9637	0.9914	0.4182	0 7247	0.2467	0.2711			
0.70	0.30	0.7943	1.4156	0.1124	0.1471	0.00052	0.0041	0.9092	1.0654	0.2141	0 3518	0.0192	0.0377			
0.80	0.20	0.7565	1.5696	0.0564	0.0714	0.00005	0.0008	0.8494	1.1568	0.0974	0 1529	0.0012	0.0084			
0.90	0.10	0.7195	1.7787	0.0241	0.0275	0.00001	0.0001	0.7761	1.3450	0.032	0.0463	0.00003	0.0004			
Охлаждение - нагрев																
$h_1 + 10^2$,	$h_2 \cdot 10^2$,		Fe-Mo							Fe-V						
М	М	$A_T^{(z)}$	$\overline{A}_T^{(z)}$	$A_{q}^{(z)}$	$\overline{A}_q^{(z)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$	$A_T^{(z)}$	$\overline{A}_{T}^{(z)}$	$A_q^{(z)}$	$\overline{A}_{q}^{(z)}$	$A_{\alpha}^{(z)}$	$A_G^{(z)}$			
0.10	0.90	1.1428	0.7667	5.3454	6.4281	194.86	34.003	1.3356	0.565	21.143	23 179	5563.5	748.8			
0.20	0.80	1.0442	0.8823	2.0124	2.6330	12.903	5.3333	1.2214	0.651	7.8041	10.033	610.0	174.0			
0.30	0.70	0.9713	0.9801	1.0547	1.4400	1.8065	1.1855	1.1357	0.7417	3 5531	5 1153	103.81	60.07			
0.40	0.60	0.9063	1.0767	0.6197	0.8560	0.2928	0.2982	1.0634	0.8262	1 7473	2 7202	18 615	12.27			
0.50	0.50	0.8503	1.1746	0.3726	0.5133	0.0415	0.0689	0.9971	0.9037	0.8926	1.4550	2 8750	12.27			
0.60	0.40	0.8066	1.2778	0.2172	0.3003	0.0061	0.0208	0.9384	0.9786	0.4618	0.7714	0.2824	0.261			
0.70	0.30	0.7661	1.3941	0.1193	0.1671	0.0014	0.0054	0.8872	1.0586	0.2322	0 3938	0.0261	0.201			
0.80	0.20	0.7266	1.5359	0.0583	0.0837	0.0004	0.0015	0.8318	1 1603	0.1034	0.1786	0.0201	0.0044			
0.90	0.10	0.6879	1.7220	0.0216	0.0340	0.00004	0.0004	0.7541	1.3437	0.0326	0.0563	0.0028	0.0093			

Таблица 2. Влияние перестановки металлических слоев разной толщины на ПА-1 в зоне контакта

Таблица З. Влияние толщины слоев на ПА-2

h ₁ -10 ² , м	h ₂ ·10 ² , м		Fe–V								
		$B_{q}^{(0)}$	$\overline{B}_{q}^{(0)}$	$B_q^{(z)}$	$\overline{B}_q^{(z)}$	$B_{\sigma}^{(z)}$	$B_G^{(z)}$	$B_q^{(z)}$	$\overline{B}_q^{(z)}$	$B_{\sigma}^{(z)}$	$B_G^{(z)}$
0.10	0.90	0.7726	1.2376	0.7278	1.2559	0.8116	1.1121	0.8099	1.2349	1.4877	0.9359
0.20	0.80	0.7915	1.2038	0.7173	1.2277	1.3535	1.1021	0.7974	1.2145	1.5815	1.6014
0.30	0.70	0.8064	1.1895	0.7172	1.1981	1.3127	0.941	0.8038	1.1708	1.4312	1.8270
0.40	0.60	0.8144	1.1866	0.721	1.1665	1.1648	0.9127	0.8199	1.1156	1.2066	2.0584
0.50	0.50	0.8166	1.1904	0.7284	1.1331	1.0929	0.8750	0.8305	1.0645	0.9855	1.9623
0.60	0.40	0.8171	1.1890	0.7419	1.0992	0.9474	0.8481	0.8274	1.0312	0.7917	1,7308
0.70	0.30	0.8159	1.1911	0.7557	1.0621	0.4444	0.7647	0.8162	1.0156	0.7143	1.3571
0.80	0.20	0.8186	1.1952	0.7785	1.0278	0.1556	0.5563	0.8078	1.0055	0.4167	1.0909
0.90	0.10	0.7918	1.2021	0.9011	0.9728	0.1053	0.3529	0.8120	0.9925	0.3542	0.6479
h 10 ² M	$h_2 \cdot 10^2$, м			Mo-	Fe		V-Fe				
<i>п</i> ₁ .10 , м		$B_{q}^{(0)}$	$\overline{B}_q^{(0)}$	$B_q^{(z)}$	$\overline{B}_q^{(z)}$	$B_{\sigma}^{(z)}$	$B_G^{(z)}$	$B_q^{(z)}$	$\overline{B}_{q}^{(z)}$	$B_{\sigma}^{(z)}$	$B_G^{(z)}$
0.10	0.90	0.8151	1.1986	0.8074	1.2021	1.2269	1.0252	0.8276	1.2059	0.9954	0.9424
0.20	0.80	0.8168	1.2037	0.8051	1.2047	1.2313	1.0374	0.8574	1.1747	0.9983	0.9729
0.30	0.70	0.8154	1.2128	0.8021	1.2063	1.2208	1.0196	0.8852	1.137	0.9681	1.0020
0.40	0.60	0.8109	1.2232	0.7921	1.2086	1.2089	0.9761	0.9136	1.0976	0.9059	1.0573
0.50	0.50	0.8053	1.2305	0.7744	1.2193	1.1812	0.9108	0.9419	1.0604	0.7917	1.0893
0.60	0.40	0.8012	1.2349	0.7533	1.2445	1.1059	0.8425	0.9699	1.0282	0.5846	1.1364
0.70	0.30	0.7942	1.2401	0.7373	1.2871	1.0414	0.7845	0.9984	1.0072	0.5238	1.1765
0.80	0.20	0.7880	1.2495	0.7353	1.3427	0.9085	0.7465	1.0242	0.9919	0.4490	1.1273
0.90	0.10	0.7767	1.2563	0.744	1.3936	0.7126	0.7083	1.0337	0.9949	0.3529	1.0597

С увеличением периодов воздействия (см. (7)) получаем при перестановке слоев металлов следующие результаты. Режим «нагрев – охлаждение»: j = 3, $A_T^{(z)} \in [0.7196, 1.1062]$, $A_q^{(z)} \in [0.0301, 5.3957]$; j = 7, $A_T^{(z)} \in [0.7213, 1.1063]$, $A_q^{(z)} \in [0.0226, 5.4112]$. Режим «охлаждение – нагрев»: j = 3, $A_T^{(z)} \in [0.6876, 1.1318]$, $A_q^{(z)} \in [0.0245, 5.3493]$; j = 7, $A_T^{(z)} \in [0.6874, 1.1317]$, $A_q^{(z)} \in [0.025, 5.345]$.

Остальные параметры асимметрии при росте *ј* ведут себя похожим образом. Сравнение с данными таблиц 2, 3 и практика наших расчетов говорят о том, что увеличение длительности периодического воздействия не дает значительных качественных и количественных отличий от значений ПА-1 и ПА-2 при j = 1.

Система Fe-V

Сразу отметим, что отличия от системы Fe-Mo имеют прежде всего количественный характер; по ряду признаков наблюдаются интересные в физическом отношении качественные различия.

Изученные варианты перестановки металлов

при фиксированных толщинах слоев (табл. 1) позволяют утверждать следующее. Здесь имеется немонотонность для $A_q^{(z)}$ и $\overline{A}_q^{(z)}$, в то время как асимметрия по отношению к температуре практически отсутствует: $A_T^{(z)} \cong 1.0$; $A_T^{(w)} \cong 1.0$; $\overline{A}_T^{(w)} \cong 0.97$.

Режим «нагрев-охлаждение»: $\overline{A}_{T}^{(z)}$ возрастает от 0.7703 до 0.9686. Тепловое состояние контакта: $(T_{z})_{\text{Fe-V}}^{\text{max}} \in [6.854, 8.9732], (q_{z})_{\text{Fe-V}}^{\text{max}} \in [0.1576, 3.7109].$

Режим «охлаждение-нагрев»: $\overline{A}_{7}^{(z)}$ возрастает от 0.7897 до 0.9614. Тепловое состояние контакта: $(T_z)_{\text{Fe-V}}^{\text{max}} \in [6.5028, 8.8195], (q_z)_{\text{Fe-V}}^{\text{max}} \in [0.1941, 4.5817].$

Перестановка слоев металлов (табл. 2) приводит к ярко выраженной асимметрии-1 по отношению к температуре и тепловому потоку в зоне контакта; параметры асимметрии гистерезисных процессов изменяются в очень широком интервале.

Режим «нагрев-охлаждение»: $A_q^{(0)}$ немонотонно изменяется от 1.1611 до 1.1724, при $h_1/h_2 \cong 6/4$ имеет максимум, равный 1.3068; похожим образом ведет себя $\overline{A}_q^{(0)}$. Кроме того $A_T^{(w)} \cong 1.0$; $\overline{A}_T^{(w)} \cong 0.97$. Тепловое состояние контакта: $(T_z)_{\text{V-Fe}}^{\max} \in [6.8584, 8.8317], (q_z)_{\text{V-Fe}}^{\max} \in [0.224, 4.9252].$

В режиме «охлаждение-нагрев» поведение $A_q^{(0)}$, $\overline{A}_q^{(0)}$, $A_T^{(w)}$, $\overline{A}_T^{(w)}$ аналогичное, а тепловое состояние контакта такое: $(T_z)_{V-Fe}^{\max} \in [6.6034, 8.6238],$ $(q_z)_{V-Fe}^{\max} \in [0.2167, 5.9512].$

Для ассимметрии-2 (табл. 3) оказывается попрежнему существенным порядок расположения слоев металлов, когда речь идет о производстве энтропии и о гистерезисе.

Остальные ПА-2 (для Fe–V и V–Fe) ведут себя следующим образом: $B_q^{(0)} \cong 0.82$; $\overline{B}_q^{(0)} \cong 1.22$; $B_T^{(z)} \cong 1.0$; $\overline{B}_T^{(z)} \cong 1.0$; $B_T^{(w)} \cong 1.0$; $\overline{B}_T^{(w)} \cong 1.0$.

Расчеты при j = 3; 7 показали, что и для этой пары металлов увеличение числа периодов не дает существенных изменений поведения системы в сравнении с j = 1.

Таким образом, тепловое взаимодействие металлов в системе Fe-V находится под влиянием конкуренции знаков производных $(d\lambda/dT)_{\rm Fe} < 0$, $(d\lambda/dT)_{\rm V} > 0$. При одинаковых по своей природе внешних термических воздействиях появляются значительные количественные и (или) качественные отличия от системы Fe-Mo.

Выводы

1. Контактный теплообмен на границе двух металлических слоев при термоциклическом воздействии обладает асимметричными свойствами двух типов: асимметрия-1 при перестановке слоев; асимметрия-2 при изменении очередности «нагрев-охлаждение». Практический интерес представляет ярко выраженная асимметрия-1 температуры и теплового потока в зоне контакта. Асимметрия-2 характерна, в основном, для энтропийных и гистерезисных процессов.

2. Ведущие факторы влияния на асимметрию контактного теплообмена: температурная зависимость коэффициента теплопроводности $\lambda(T)$; знаки производных $(d\lambda/dT)_{M_1}$, $(d\lambda/dT)_{M_2}$; отношение толщин слоев h_1/h_2 .

3. Формирование теплового состояния контакта происходит в течение первого периода термоциклирования; последующие периодические воздействия не дают существенных количественных и качественных изменений в поведении ПА-1 и ПА-2.

Литература

- Кудинов В. А., Калашников В. В., Карташов Э. М., Лаптев Н. И., Сергеев С. К. Тепломассоперенос и термоупругость в многослойных конструкциях. М.: Энергоатомиздат (1997)
- 2. Старовойтов Э. И. Вязкоупругопластичные слоистые пластины и оболочки. Гомель: БелГУТ (2002)
- Новиков И. И. Теория термической обработки металлов. М.: Машиностроение (1986)
- 4. Шабловский О. Н., Концевой И. А. Динамический тепловой гистерезис в металлах // Материалы, технологии, инструменты, 9 (2004), № 1, 25–29
- Шабловский О. Н. Релаксационный теплоперенос в нелинейных средах. Гомель: ГГТУ имени П. О. Сухого (2003)
- Gogol W. Experymentalne badania efectu asymetrii [przewodzenia ciepla w układach dwuskładnikowych // Arch. Termodyn, 5 (1984), № 3-4, 289
- 7. Зиновьев В. Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия (1989)
- 8. Беккер Р. Теория теплоты. М.: Энергия (1974)

Shablovsky O. N., Kroll D. G.

Dynamical properties of contact heat exchange in a two-layer metal phase.

The nonlinear thermal properties of a two-layer metal plate are studied at cyclic temperature influence on the border of a sample. The detailed theoretical analysis of asymmetric properties of contact heat exchange on border of layers in modes " heating – cooling " and "cooling – heating" is executed. The results of research of systems Fe–Mo and Fe–V are submitted.

Поступила в редакцию 08.11. 2004.

© О. Н. Шабловский, Д. Г. Кроль, 2004.