## УДК 534.1:536.2.01

# **БОЛЬШИЕ СОБСТВЕННЫЕ КОЛЕБАНИЯ ТЕПЛОВОГО РЕЗОНАТОРА**

## О. Н. ШАБЛОВСКИЙ<sup>+</sup>, И. А. КОНЦЕВОЙ

Гомельский государственный технический университет имени П. О. Сухого, пр. Октября, 48, 246746, г. Гомель, Беларусь, e-mail: shabl@gstu.gomel.by

Изучаются собственные колебания большой амплитуды в тепловых резонаторах трех типов: открытом, полуоткрытом и закрытом. Задача решена на основе прямого численного моделирования. Расчеты проведены для высокотемпературной сверхпроводящей керамики на основе иттрия в двух температурных областях с сильно выраженными нелинейностями теплофизических свойств материала. Обнаружено неклассическое поведение градиента температуры. Установлены качественные и количественные закономерности эволюции процесса во времени.

## Введение

Проблемы термической генерации нелинейных колебаний в материалах представляют значительный интерес для физики волн и ее приложений. В настоящее время накоплен большой опыт исследований акустических резонаторов, см. [1] и приведенную там библиографию. Сравнительно недавно появились публикации о сверхпроводниковых резонаторах в электромагнитном поле с учетом тепловой нелинейности, которой обладают высокотемпературные сверхпроводящие материалы [2]. В условиях хорошо выраженной тепловой неравновесности некоторые сверхпроводники могут служить основой теплового резонатора [3]. Для таких устройств важное значение имеет задача о неустановившихся нелинейных колебаниях температуры.

В данной работе изучается тепловой резонатор, материалом которого служит высокотемпературная сверхпроводящая керамика на основе иттрия. Локальная неравновесность теплового поля – главная отличительная черта рассматриваемых процессов. Цель состоит в том, чтобы исследовать: 1) собственные колебания большой амплитуды в резонаторах трех типов – закрытом, полуоткрытом и открытом; 2) свойства этих колебаний в зависимости от сильных нелинейностей теплофизических свойств керамики.

## Постановка и решение задачи

Релаксационная модель Максвелла переноса тепла в неподвижной среде состоит из уравнения для теплового потока и уравнения баланса энергии:

$$\frac{q}{\gamma} + \frac{\partial q}{\partial t} + \frac{\partial V}{\partial x} = 0, \qquad (1)$$

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0, \qquad (2)$$

$$u = \int_{0}^{T} c(T) dT , V = \int_{0}^{T} \frac{\lambda(T)}{\gamma(T)} dT = \int_{0}^{u} w^{2}(u) du ; w^{2} = \frac{\lambda}{c\gamma},$$

где x – декартова координата; t – время; T – температура; q – удельный тепловой поток;  $\lambda$  – коэффициент теплопроводности; c – объемная теплоемкость;  $\gamma$  – время релаксации теплового потока; w – скорость распространения тепловых возмущений. Искомые функции:  $T(x, t), q(x, t), x \in [0, h], t \ge 0; h$  – толщина слоя материала. Современные методы исследования локально-неравновесной модели теплопереноса (1), (2) представлены в [3]; там же проведен подробный анализ возникновения градиентной катастрофы и свойств ударных тепловых волн. В соответствии с этими результатами присоединяем к левой части уравнения (1) слагаемое

$$\Psi \frac{\rho}{\gamma} \frac{\partial}{\partial x} \left( \frac{1}{u} \frac{\partial q}{\partial x} \right),$$

где  $\rho$  – плотность,  $\Psi$  – коэффициент искусственной диссипации. Этот коэффициент является аналогом газодинамического коэффициента искусственной вязкости и применяется для того, чтобы при численном решении сглаживать сильные разрывы, которые могут появляться в ходе эволюции теплового поля.

<sup>+</sup> Автор, с которым следует вести переписку.

Собственные колебания большой амплитуды изучаем для трех основных типов резонаторов.

Закрытый резонатор:

$$q(x = 0, t) = q_0, q(x = h, t) = q_w;$$
(3)

допускается вариант, когда  $q_0 = q_w = 0$ .

Полуоткрытый резонатор:

$$q(x = 0, t) = 0, T(x = h, t) = T_w.$$
(4)

Открытый резонатор:

$$T(x = 0, t) = T_0, \ T(x = h, t) = T_w;$$
(5)

допускается вариант, когда  $T_0 = T_w$ . Здесь  $q_0, q_w$ ,  $T_0, T_w$  – постоянные величины. Для всех трех вариантов (3)–(5) начальные условия берем в виде:

$$T(x, t=0) = T^{0}(x), q(x, t=0) = 0, x \in [0, h].$$
(6)

Экспериментальное исследование теплофизических свойств высокотемпературной сверхпроводящей керамики  $Y_{0.8} - Sm_{0.2} - Ba_2 - Cu_3 - O_{7-x}$  выполнено в [4]. Воспользуемся этими результатами и построим аппроксимирующие зависимости  $\lambda(T)$ , c(T) для двух температурных областей.

Низкие температуры:

*T*,  $K \in [7, 13]$ , y = 600 c;

 $\lambda(T) = 1,19\exp(0,023T) - 40\exp(-0,54T)$ , Вт/(м-град);

 $c(T) = 4985 \exp(0,112T)$ , Дж/(м<sup>3</sup>-град).

Здесь функции  $\lambda(T)$  и c(T) – монотонно возрастающие, причем  $\lambda \in [0,485; 1,569]; c \in [10918; 21380].$ Существенно, что температуропроводность  $a = \lambda(T)/c(T)$  имеет максимум при T = 9,78 К.

Высокие температуры:

*T*,  $K \in [145; 300]$ , y = 500 c;

 $\lambda(T) = 6,728 \exp((0,00105T) - 1,3205 \exp((0,00475T)))$ 

Вт/(м.град);

 $c(T) = 1,44 \cdot 10^6 \exp(0,0019T), Дж/(м^3 \cdot град).$ 

Здесь  $\lambda(T)$  – монотонно убывающая функция, причем  $\lambda \in [3,729; 5,205]; c(T)$  – монотонно растет в интервале  $[1,897\cdot10^6; 2,546\cdot10^6];$  температуропроводность a(T) – монотонно убывающая функция.

Время релаксации у было выбрано на основе данных [4, 5]. Температура сверхпроводящего перехода равна 97 К.

Далее работаем с безразмерными величинами. При обезразмеривании применяем масштабы величин (они отмечены нижним индексом b), которые обеспечивают инвариантность размерной и безразмерной форм записи уравнений и краевых условий:  $\lambda_b = x_b^2 c_b / t_b$ ,  $q_b = \lambda_b T_b / x_b$  и т. п. Решение краевых задач (1)-(6) выполняем численным методом интегральных соотношений А. А. Дородницына; применяем гиперболический вариант алгоритма построения расчетной схемы [6]. В *n*-ом приближении отрезок [0, *h*] делится на *n* полос:  $x_i = ih/n$ , i = 0, 1, ..., n. В данной задаче n = 6. Строим замкнутую систему интегральных соотношений и редуцируем их к аппроксимирующей системе обыкновенных дифференциальных уравнений. Итоговая задача Коши решается методом Рунге-Кутта пятого порядка точности. В результате получаем температуру  $T(x_i, t)$  и тепловой поток  $q(x_i, t)$  на границах полос. Контроль точности расчетной схемы основан на использовании различных проверочных вариантов построения «кусочных» и «сквозных» аппроксимаций. Кроме того, выполнялось сравнение с точным решением нелинейных уравнений (1), (2). Проведенные тестовые расчеты подтвердили высокую точность вычислений.

#### Результаты и обсуждение

При обработке результатов применяем следующие критерии:

безразмерный тепловой поток 
$$Q = \frac{hq(x,t)}{T_w^0 \lambda(T_w^0)};$$

безразмерный градиент температуры

$$g = \frac{h}{T_{\psi}^0} \left( \frac{\partial T(x,t)}{\partial x} \right);$$

параметр энергии  $E = \frac{T c(T)}{\rho w^2(T)};$ 

параметр неравновесности 
$$\Omega^{-2} = \frac{q^2}{u^2 w^2}$$

параметр нелинейности среды  $D = \frac{T}{w^2} \frac{d(w^2)}{dT}$ ;

амплитуда температуры 
$$A_T \equiv A_T(x_i, t) = \frac{T(x_i, t)}{T_w^0};$$

амплитуда теплового потока  $A_q \equiv q(x_i, t);$ 

добротность 
$$K = \frac{1}{h} \left( \frac{\lambda \gamma}{c} \right)^{1/2};$$

волновое сопротивление 
$$Z = \frac{1}{h} (\lambda c \gamma)^{1/2} = \frac{w c \gamma}{h}$$

Здесь параметры *К* и *Z* являются тепловыми аналогами добротности и волнового сопротивления, применяемых для расчета электрических контуров и линий передач.

Масштабы величин для области низких температур:  $T_b = 10$  K,  $q_b = 1$  BT/M<sup>2</sup>,  $t_b = y = 600$  c,  $x_b = h$ ; для области высоких температур: T = 225 K,  $q_b = 10^3$  BT/M<sup>2</sup>,  $t_b = y = 500$  c,  $x_b = h$ .

Сделаем пояснения к содержанию таблиц 1-3. Сведения об амплитудах температуры и теплового потока даны в конце каждого из первых четырех полупериодов колебаний. Указаны алгебраические

| <i>h</i> -10², м                                                                                                                                   |                  | x =              | = 0              |                      | x = h/2           |                      |                  |                  | $t^T/v$                            | 19/2           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|----------------------|-------------------|----------------------|------------------|------------------|------------------------------------|----------------|
|                                                                                                                                                    | $\Delta T^{(1)}$ | $\Delta T^{(2)}$ | $\Delta T^{(3)}$ | $\Delta T^{(4)}$     | $\Delta q^{(1)}$  | $\Delta q^{(2)}$     | $\Delta q^{(3)}$ | $\Delta q^{(4)}$ | $\binom{n_{\infty}}{(n_{\infty})}$ | $(n_{\infty})$ |
| Низкие температуры: $T^{0}(x) = 10 - 2 \exp(-0.07x/h) \cos(\pi x/h)$ К, $T^{0}$ , $K \in [8, 11, 865]$ , $T = 10 - 2 \exp(-0.07x/h) \cos(\pi x/h)$ |                  |                  |                  |                      |                   |                      |                  | 865], $T_* = 10$ | 0,08 K                             |                |
| 2                                                                                                                                                  | -2,077           | 1,687            | -1,885           | 1,574                | -10,678           | 10,258               | -9,776           | 9,474            | 9,084<br>(105)                     | 9,312<br>(107) |
| 5                                                                                                                                                  | -2,079           | 1,610            | -1,616           | 1,316                | -10,380           | 9,338                | -8,302           | 7,532            | 9,072<br>(43)                      | 9,312<br>(43)  |
| 10                                                                                                                                                 | -2,086           | 1,446            | -1,273           | 0,953                | -9,887            | 7,896                | -6,344           | 5,081            | 9,108<br>(22)                      | 9,360<br>(22)  |
| 20                                                                                                                                                 | -2,082           | 1,172            | -0,787           | 0,498                | -8,959            | 5,704                | -3,696           | 2,317            | 9,144<br>(12)                      | 9,384<br>(12)  |
|                                                                                                                                                    | É                | Зысокие тем      | пературы: 7      | $x^{-0}(x) = 225 - $ | 75 cos $(\pi x/h$ | ) K, $T^0$ , K $\in$ | [150; 300], 1    | T. = 227,92 I    | K                                  |                |
| 1                                                                                                                                                  | -78,093          | 64,134           | -60,836          | 51,467               | -13344,7          | 11858,1              | -10561,4         | 9342,1           | 9,384<br>(40)                      | 9,300<br>(41)  |
| 2                                                                                                                                                  | -77,934          | 57,443           | -47,453          | 36,623               | -12687,4          | 9953,2               | -7930,8          | 6191,4           | 9,240<br>(21)                      | 9,336<br>(21)  |
| 5                                                                                                                                                  | -77,729          | 40,750           | -22,378          | 12,782               | -10878,7          | 5985,4               | -3289,0          | 1816,7           | 9,240<br>(9)                       | 9,372<br>(9)   |
| 10                                                                                                                                                 | -77,992          | 21,051           | -5,951           | 1,625                | -8746,6           | 2500,8               | -671,4           | 224,8            | 9,480<br>(5)                       | 9,600<br>(5)   |

| Таблица 1 | . Свойства | амплитуд колебаний | в закрытом | резонаторе ( | $q_0 = 0, q$ | 7. = 0 |
|-----------|------------|--------------------|------------|--------------|--------------|--------|
|-----------|------------|--------------------|------------|--------------|--------------|--------|

Таблица 2. Свойства амплитуд колебаний в полуоткрытом резонаторе  $q_0 = 0$ ,  $T_w = \text{const}$ 

| <i>h</i> -10 <sup>2</sup> , м                                                                                       | x = 0            |                  |                  |                     | x = h            |                      |                  |                      | $T^* = 10,08 \text{ K},$ | 14 /2          |
|---------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|---------------------|------------------|----------------------|------------------|----------------------|--------------------------|----------------|
|                                                                                                                     | $\Delta T^{(1)}$ | $\Delta T^{(2)}$ | $\Delta T^{(3)}$ | $\Delta T^{(4)}$    | $\Delta q^{(1)}$ | $\Delta q^{(2)}$     | $\Delta q^{(3)}$ | $\Delta q^{(4)}$     | $(n_{\infty})$           | $(n_{\infty})$ |
| Низкие температуры: $T^{(0)}(x) = 10 - 3 \exp(-0.27x/h) \cos(0.5\pi x/h)$ К, $T^{(0)}, K \in [7, 10], T_{*} = 10$ К |                  |                  |                  |                     |                  |                      |                  |                      |                          |                |
| 2                                                                                                                   | -3,000           | 2,058            | -2,417           | 1,777               | -13,245          | 12,120               | -11,145          | 10,375               | 9,156                    | 9,696          |
| 5                                                                                                                   | -3,000           | 1,825            | -1,782           | 1,242               | -12,434          | 10,054               | -8,191           | 6,604                | 9,012<br>(23)            | 9,504<br>(23)  |
| 10                                                                                                                  | -3,000           | 1,489            | -1,115           | 0,673               | -11,217          | 7,376                | -4,841           | 3,154                | 9,060<br>(12)            | 9,516<br>(12)  |
| 20                                                                                                                  | -3,000           | 0,971            | -0,446           | 0,185               | -9,326           | 3,935                | -1,675           | -0,305               | 9,192<br>(7)             | 9,672<br>(7)   |
|                                                                                                                     | В                | ысокие тем       | пературы: Т      | $x^{0}(x) = 225 - $ | 75 cos (0,5π     | $(x/h)$ K, $T^0$ , k | K ∈ [150; 22.    | 5], <i>T</i> . = 225 | К                        |                |
| 1                                                                                                                   | -75,000          | 53,393           | -45,765          | 33,908              | -11912,6         | 9414,4               | -7450,4          | 5888,3               | 9,096<br>(21)            | 9,444<br>(21)  |
| 2                                                                                                                   | -75,000          | 42,458           | -28,013          | 16,830              | -10773,6         | 6695,6               | -4175,4          | 2599,9               | 9,120<br>(11)            | 9,480<br>(11)  |
| 5                                                                                                                   | -75,000          | 19,778           | -5,738           | 1,620               | -8314,8          | 2351,4               | -667,8           | 190,6                | 9,384<br>(5)             | 9,744<br>(5)   |
| 10                                                                                                                  | -75,000          | 2,205            | 0,000            | 0,000               | -5965,4          | 183,8                | 0,000            | 0,000                | 9,732<br>(2)             | 10,212<br>(2)  |

Таблица 3. Свойства амплитуд колебаний в открытом резонаторе  $T_0 = \text{const}, T_w = \text{const}$ 

| <i>h</i> -10 <sup>2</sup> , м                                                                                        |                  | <u>x</u> =       | h/2              |                  | x = 0              |                    |                  |                      | tT /v          | 19/2           |
|----------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|----------------------|----------------|----------------|
|                                                                                                                      | $\Delta T^{(1)}$ | $\Delta T^{(2)}$ | $\Delta T^{(3)}$ | $\Delta T^{(4)}$ | $\Delta q^{(1)}$   | $\Delta q^{(2)}$   | $\Delta q^{(3)}$ | $\Delta q^{(4)}$     | $(n_{\infty})$ | $(n_{\infty})$ |
| Низкие температуры: $T^0(x) = 10 + 2,25 \sin(\pi x/h) \text{ K}, T^0, \text{ K} \in [10; 12,25], T_* = 10 \text{ K}$ |                  |                  |                  |                  |                    |                    |                  |                      |                |                |
| 2                                                                                                                    | 2,250            | -3,034           | 2,098            | -2,603           | -14,338            | 14,587             | -13,104          | 12,729               | 8,592<br>(97)  | 8,160<br>(92)  |
| 5                                                                                                                    | 2,250            | -2,747           | 1,862            | -2,036           | -14,040            | 13,146             | -11,150          | 9,969                | 9,024<br>(42)  | 8,844<br>(40)  |
| 10                                                                                                                   | 2,250            | -2,364           | 1,502            | -1,383           | -13,268            | 10,962             | -8,356           | 6,733                | 8,964<br>(21)  | 7,800<br>(22)  |
| 20                                                                                                                   | 2,250            | -1,793           | 0,973            | -0,666           | -12,031            | 7,861              | -4,773           | 3,087                | 8,928<br>(11)  | 9,504<br>(12)  |
|                                                                                                                      |                  | Высокие те       | мпературы:       | $T^{0}(x) = 225$ | + 75 sin ( $\pi x$ | $(h)$ K, $T^0$ , K | € [225; 300]     | , <i>T</i> . = 225 K |                |                |
| 1                                                                                                                    | 75,000           | -75,600          | 59,947           | -58,500          | -14489,7           | 13193,1            | -11272,6         | 10344,9              | 8,904<br>(41)  | 8,028<br>(35)  |
| 2                                                                                                                    | 75,000           | -66,713          | 47,723           | -40,509          | -13756,8           | 11083,7            | -8410,5          | 6899,1               | 9,972<br>(21)  | 8,220<br>(19)  |
| 5                                                                                                                    | 75,000           | -45,788          | 23,445           | -13,390          | -11791,0           | 6597,6             | -3463,9          | 2016,3               | 9,276<br>(9)   | 10,152<br>(9)  |
| 10                                                                                                                   | 75,000           | -23,040          | 6,028            | -1,971           | -9461,1            | 2728,6             | -698,7           | 253,9                | 9,372<br>(5)   | 9,624<br>(5)   |

величины  $\Delta T^{(1)}$ , ...,  $\Delta T^{(4)}$  и  $\Delta q^{(1)}$ ,  $\Delta q^{(4)}$  отклонений температуры (в кельвинах) и теплового потока (в Вт/м<sup>2</sup>) от их асимптотических (при  $t \to \infty$ ) значений на соответствующей полосе, рис. 1; на рис. 2 показаны типичные начальные профили  $T^0(x)$ . Величина температуры, по отношению к которой вычисляются  $\Delta T$ , обозначается  $T_*$ ; во всех вариантах  $q_* = 0$ . Считаем, что процесс затухания колебаний закончен, если на каждой полосе выполнены неравенства  $|\Delta T| \leq 10^{-2} |\Delta T|_{max}$ ,  $|\Delta q| \leq 10^{-2}$  $|\Delta q|_{max}$ , где индекс тах относится к наибольшему по модулю достигаемому в задаче значению.



Рис. 1. Собственные колебания: отсчет отклонений температуры от ее равновесного значения

Длительность полного затухания обозначаем  $t_{\infty}^{T}$ ,  $t_{\infty}^{q}$ ; рядом с этими значениями в скобках указываем соответствующее число  $n_{\infty}$  полупериодов колебаний. Видно, что зависимость  $n_{\infty}$  от толщины h монотонно убывающая и близка к линейной. Это означает, что в тонком и толстом образцах имеем, соответственно, высокочастотный и низкочастотный процессы для наблюдения неравновесных структур, возбуждаемых неоднородным распределением температуры  $T^{0}(x)$ . Кроме того, для тонких пластин выше интенсивность теплообмена: при убывании h растут модули тепловых потоков в сечениях  $x = x_i$ .

Практика наших расчетов показала важную роль первоначального направления градиента температуры [знака производной  $dT^0(x)/dx$ ], влияющего на появление областей импульсного (ударного) нагрева и охлаждения. Столь же существен характер немонотонности функции  $T^0(x)$  – наличие у нее максимума или минимума, см. рис. 2.

Пусть *l* и *L* есть, соответственно, точная нижняя и точная верхняя границы значений начальной температуры  $T^{0}(x), x \in [0, h]$ . Оказывается, что существуют такие параметры задачи, для которых в ходе волнового процесса возможна одна из ситуаций: 1) происходит всплеск нагрева, T/L > 1; температура импульсно повышается до значений, превышающих верхнюю границу L; 2) происходит всплеск охлаждения, T/L < 1; температура становится меньше нижней границы /. Например, согласно табл. 2, имеем в отдельные моменты времени при низких температурах:  $T/L = 1,2, h = 2 \cdot 10^{-2}$  м; при высоких температурах:  $T/L = 1,24, h = 1.10^{-2}$  м. Табл. 3: низкие температуры,  $T/\partial = 0.7$ ,  $h = 2.10^{-2}$  м. Перечисленные результаты справедливы для всех трех типов резонаторов.

Взаимодействие тепловых волн с границами образца обусловливает главные различия между резонаторами. Табл. 1–3 демонстрируют:

 различные характеры пространственной неоднородности тепловых полей (см., например, поведение тепловых потоков на левой, на правой границах образца и в его средней точке);

2) хорошо выраженные всплески температуры (теплового потока) на той границе, где зафиксирован, соответственно, тепловой поток (температура).

Вместе с тем для одного и того же типа резонатора наблюдаются одинаковые качественные свойства амплитуд колебаний в низкотемпературном и высокотемпературном интервалах. В количественном отношении в каждом из этих интервалов функции  $\lambda(T)$ , c(T) существенным образом воздействуют на размахи колебаний.

На рис. 3–5 показаны типичные формы колебаний на нескольких фазовых плоскостях; они несут дальнейшую информацию о тех вариантах, что даны в табл. 1–3 при  $h = 5 \cdot 10^{-2}$  м. Стрелка указывает направление движения точки вдоль фазовой траектории с течением времени. При низких и при высоких температурах для всех трех типов резонаторов имеем следующие результаты. Связь параметра нелинейности  $\Omega^{-2}$  с тепловым потоком Q имеет гистерезисный характер; в отдельных вариантах петля гистерезиса вырождается в однозначную линию  $\Omega^{-2}(Q)$ . Зависимость  $\Omega^{-2}(D)$  – немонотонная, имеет максимум, и этот максимум



Рис. 2. Начальные температурные профили для резонаторов: а – закрытого; б – полуоткрытого; в – открытого



Рис. 3. Закрытый резонатор. Фазовые портреты колебаний при высоких температурах,  $x = x_1 = h/6$ 

Рис. 4. Полуоткрытый резонатор. Фазовые портреты колебаний при низких температурах,  $x = x_3 = h/2$ 

Рис. 5. Открытый резонатор. Фазовые портреты колебаний при высоких температурах,  $x = x_1 = h/6$ 

смещается с течением времени, в зависимости от условий задачи, в сторону больших или меньших по модулю значений параметра нелинейности D. На плоскостях (g, Q), (Q, E), ( $A_T$ ,  $A_q$ ) имеем устойчивые фокусы. Волновое сопротивление  $Z(A_T)$  – монотонно возрастающая функция амплитуды температуры. Известно, что в равновесных условиях (модель теплопроводности Фурье) векторы q и grad Tнаправлены противоположно друг другу:  $q = -\lambda$ grad T. Это – классическая ситуация. В локальнонеравновесных условиях может возникнуть неклассический вариант [3]: q и grad T направлены одинаково. Для рассмотренных здесь задач обнаружено, что во внутренних точках при  $t \ge 0$  происходит чередование классической и неклассической ситуаций. Например, на рис. 3–5 на фазовой плоскости (g, Q) имеем в l и III квадрантах Qg > 0, во II и IV Qg < 0.

Основные качественные различия между типами резонаторов относятся к поведению добротности К(А<sub>T</sub>). Закрытый резонатор: при низких температурах у левой и правой границ образца  $(x = x_1, x = x_5)$  эта функция имеет хорошо выраженный максимум, а в средней точке (x = h/2) эта зависимость близка к линейной и убывающая; при высоких температурах К(А<sub>T</sub>) – монотонно убывающая функция. Полуоткрытый резонатор: во всех точках образца  $K(A_T)$  при низких температурах монотонно возрастающая функция, а в области высоких температур монотонно убывает. Открытый резонатор: при низких температурах  $K(A_T)$  имеет максимум, а при высоких температурах – монотонно убывающая функция. Перечисленные свойства добротности резонаторов обусловлены двумя факторами: условиями на границах и температуропроводностью a(T).

#### Выводы

1. Неоднородное по координате начальное тепловое поле  $T^0(x)$  возбуждает нелинейные собственные колебания большой амплитуды. Их свойства обусловлены неравновесностью процесса и взаимодействием тепловых волн с границами образца.

2. Толщина образца – один из основных факторов влияния на процесс. Для тонкой и толстой пластин имеем, соответственно, высокую и низкую частоты колебаний.

3. Три типа резонаторов (закрытый, полуоткрытый, открытый) различаются между собой структурой температурной неоднородности и поведением добротности при низких и при высоких температурах. В каждом сечении образца наблюдается чередование во времени классической (*q*·grad *T* < 0) и неклассической (q-grad T > 0) ситуаций. Это обстоятельство важно при экспериментальном определении теплового потока.

#### Обозначения

T – температура, К; q – тепловой поток, Вт/м<sup>2</sup>;  $c = \rho c_p$  – объемная теплоемкость, Дж/(м<sup>3</sup>·град);  $\rho$  – плотность, кг/м<sup>3</sup>;  $\lambda$  – коэффициент теплопроводности, Вт/(м·град); y – время релаксации теплового потока, с; t – время, с; x – декартова координата, м; w – скорость распространения тепловой волны, м/с; a – температуропроводность, м/с<sup>2</sup>;  $\psi$  – коэффициент искусственной диссипации, м<sup>4</sup>/с<sup>2</sup>; h – толщина образца, м; u – плотность энергии, Дж/м<sup>3</sup>.

Индексы: нижний нулевой индекс – значение функции на левой границе; w – значение функции на правой границе; верхний нулевой индекс – начальное (при t = 0) значение функции; b – масштаб (характерное значение) величины.

#### Литература

- 1. Руденко О. В., Хедберт К. М., Энфло Б. О. Нелинейные стоячие волны в слое, возбуждаемые периодическим движением его границы // Акустический журнал. – 2001 (47), № 4, 525–533
- 2. Жаров А. А., Нефслов И. М., Резник А. Н. Сверхпроводниковый резонатор в сильных СВЧ полях: тепловой домен, нелинейные тепловые эффекты // Журнал технической физики. – 1997 (67), № 10, 81–89
- Шабловский О. Н. Релаксационный теплоперенос в нелинейных средах. Гомель: ГГТУ имени П.О. Сухого. – 2003
- Бойко Б. Б., Акимов А. И., Васильев Л. Л., Гатальская
   В. И., Демьянов С. Е., Евсеева Л. Е., Стрибук Е. К., Танаева С. А. Теплофизические свойства высокотемпературных сверхпроводников Y<sub>0.8</sub> - Sm<sub>0.2</sub> - Ba<sub>2</sub> - Cu<sub>3</sub> - O<sub>7-x</sub> в диапазоне температур 4.2-380 К // Инженерно-физический журнал. - 1990 (58), № 5, 709-714
- Voronel A. V., Linsky D., Kisliuk A., Drislikh S. Heat capacity and equilibration time near T<sub>c</sub> of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> // Physica C. - 1988 (153-155), 1086-1088
- Коробейников В. П. Задачи теории точечного взрыва. М.: Наука. – 1985

Shablovskii O. N. and Kontsevoy I. A. Large natural oscillations of a thermal resonator.

Поступила в редакцию 24.04.2006.

© О. Н. Шабловский, И. А. Концевой, 2006.

Natural oscillations of large amplitudes are studied in heat resonators of three types: open-ends, closed-ends, and half-open ones. The problem is solved by means of straight numerical modelling. The calculations were conducted for high-temperature superconducting yttrium-based ceramics with two thermal regions of strongly nonlinear thermo-physical properties. A non-classic behaviour of the temperature gradient is found out. Qualitative and quantitative features of time evolution of the process are established.