РАСЧЕТЫ И МОДЕЛИРОВАНИЕ

УДК 548.55: 536.2.01

РАСЧЕТ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ФРОНТА КРИСТАЛЛИЗАЦИИ ГЛУБОКО ПЕРЕОХЛАЖДЕННОГО РАСПЛАВА

О. Н. ШАБЛОВСКИЙ⁺, Д. Г. КРОЛЬ

УО «Гомельский государственный технический университет имени П. О. Сухого», пр. Октября, 48, 246746, г. Гомель, Беларусь.

Экспериментальные данные о зависимости скорости роста кристалла от переохлаждения расплава изучаются с позиций теории локально-неравновесного теплопереноса. Проведено численное моделирование задачи о распространении фронта высокоскоростной кристаллизации. Представлены результаты расчета нестационарных, энтропийных и кинетических свойств фазовой границы для трех веществ: никеля, меди и германия.

Введение

Разработка методов получения быстрозакаленнных материалов - сложная задача, требующая изучения влияния скорости охлаждения на возникновение неравновесных структур [1]. В русле этих исследований находится проблема кристаллизации вещества из глубоко переохлажденного расплава [2-8]. В экспериментальных работах [6-8] установлена зависимость скорости роста кристалла от переохлаждения расплава ΔT . Опыты проводились в левитационной (вакуумной) камере с каплями расплава диаметром около 6 мм; переохлаждение достигало 300 °С; наблюдались скорости роста от 2 до 70 м/с. В статье [9] представлен способ теплофизического истолкования экспериментальных зависимостей «переохлаждение скорость роста кристалла» для однокомпонентных систем (никель, медь, германий). Данная работа является продолжением этих исследований и имеет следующие цели: 1) расчет параметров локально-неравновесного теплового состояния твердой фазы; 2) определение кинетических свойств фронта кристаллизации.

Постановка и решение задачи

Локально-неравновесный теплоперенос в твердой фазе определяется уравнением энергии и уравнением Максвелла для теплового потока:

$$c\frac{\partial T}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad q + \gamma \frac{\partial q}{\partial t} = -\lambda \frac{\partial T}{\partial x}; \tag{1}$$

 $t \ge 0, x \in [x_w, x_j].$

+ Автор, с которым следует вести переписку.

Здесь x — декартова координата; t — время; T температура; q — удельный тепловой поток; λ коэффициент теплопроводности; c — объемная теплоемкость; y — время релаксации теплового потока; x_w — координата левой границы закристаллизовавшейся области. Индексами * и j отмечены значения функций, соответственно, справа (жидкая фаза) и слева (кристаллическая фаза) от фронта кристаллизации (ФК) $x = x_j(t)$, перемещающегося вправо со скоростью $N = dx_j/dt > 0$.

Расплав находится в неоднородном тепловом состоянии:

$$T_* = T_*^0 - \frac{q_*^0}{\lambda_*} x, \quad q_* = q_*^0 + q_*^1 \exp(-t/\gamma_*),$$

$$x \in [x_1(0), x^1], \quad \lambda_*, T_*^0, q_*^0, q_*^1 - \text{const.}$$

Сильный разрыв теплового поля служит математическим образом ФК, и условия динамической совместности имеют вид:

$$q_{j} - q_{*} = N(u_{j} - u_{*}) - Q, \quad Q = L\left(N + \gamma \frac{dN}{dt}\right); \quad (2)$$

$$N(q_j - q_*) = V_j - V_*; \qquad (3)$$

$$u(T) = \int_0^T c(T) dT, \quad V = \int_0^T \frac{\lambda(T)}{\gamma(T)} dT = \int_0^u w^2(u) du,$$

где u – плотность энергии; $w = (\lambda/\gamma c)^{1/2}$ – скорость распространения тепловых возмущений; L – теплота кристаллизации единицы объема вещества.

Производство энтропии ω на фронте роста вычисляется по формулам:

$$\begin{split} \omega &= N \cdot (\Delta S) + \left(\frac{q}{T}\right)_* - \left(\frac{q}{T}\right)_j; \\ \Delta S &\equiv S_j - S_* = (\Delta S)_{eq} + \left(\frac{\gamma q^2}{2\lambda T^2}\right)_* - \left(\frac{\gamma q^2}{2\lambda T^2}\right)_j; \\ (\Delta S)_{eq} &= \int_{T_*}^{T_c} \frac{c^*(T)}{T} dT - \int_{T_j}^{T_c} \frac{c^j(T)}{T} dT - \frac{L}{T_c}. \end{split}$$

Здесь T_c – равновесная температура затвердевания; $(\Delta S)_{eq}$ – изменение локально-равновесной энтропии; ΔS – изменение локально-неравновесной энтропии; $c^*(T)$ и $c^J(T)$ – теплоемкости жидкой и твердой фаз.

Термодинамически допустимый ФК должен удовлетворять условию необратимости $\omega > 0$ и одной из цепочек неравенств:

$$w_*^2 < D < N^2 < w_j^2 ; (4)$$

$$w_j^2 < D < N^2 < w_*^2$$
; (5)

 $D = (V_{1} - V_{*})/(u_{1} - u_{*}) .$

Соотношения (2)--(5) получены и обоснованы в [5, 10].

На левой границе задаем условие теплоизо-ляции:

$$x = x_w, q_w = 0.$$
 (6)

Это соответствует условиям опытов [6-8]. На ФК имеем баланс энергии (2) и баланс тепловых потоков (3). В математическом отношении более простым по сравнению с (3) является известный закон нормального роста:

$$N = \mu (T_c - T_i), \tag{7}$$

где μ – кинетический коэффициент, зависящий от свойств расплава; T_j – температура вещества на левой стороне разрыва; $(T_c - T_j)$ – переохлаждение на фронте роста. Начальные условия для твердой фазы:

$$t = 0, T = T^{0}(x), q = q^{0}(x).$$
 (8)

Задача состоит в том, чтобы найти неизвестные функции T(x, t), q(x, t), N(t) на основе уравнений (1) с краевыми условиями (8), (6), (2) и (3) или (7). Численные расчеты проводились в безразмерных величинах. При обезразмеривании применялись масштабы величин (они отмечены нижним индексом b), для которых размерная и

безразмерная формы записи одинаковые: $\lambda_b = x_b^2 c_b / t_b$, $q_b = \lambda_b T_b / x_b$ и т. д. Далее принято, что x_b – толщина начального слоя твердой фазы, поэтому $x_w = 0$, $x_j(t = 0) = 1$.

Исходным пунктом алгоритма является выбор начального состояния (8). Уравнения (1) при λ , *c*, *y* – const имеют точное локальное по координате *x* решение:

$$T = T_0 + T_1 \exp(-t/y) + T_2 \exp[-a_2(x+a_1t)],$$

$$q = \left(g_0 + \frac{cT_1}{\gamma}x\right) \exp(-t/\gamma) - a_1 cT_2 \exp[-a_2(x+a_1t)],$$

$$a_2 = a_1 / \left[\gamma \left(a_1^2 - w^2\right)\right], T_0, T_1, T_2, g_0, a_1 - \text{const.}$$

Отсюда при t = 0 получаем:

$$T^{0}(x) = T_{0} + T_{1} + T_{2} \exp(-a_{2}x),$$

$$q^{0}(x) = g_{0} + \frac{cT_{1}}{v}x - a_{1}cT_{2} \exp(-a_{2}x), x \in [0, 1]$$

$$a_1 < 0, a_2 > 0.$$

В этом решении λ , *c*, *y* подсчитываются при $T = [T_j(0) + T_w(0)]/2.$ Далее учитываем, что

$$T^0(x=1) = T_j(t=0), q^0(x=0) = q_w,$$

 $T^0(x=0) = T_w(t=0), q^0(x=1) = q_j(t=0)$ и находим

$$T_{0} = T_{w} (0) - T_{1} - T_{2}, g_{0} = q_{w} + ca_{1}T_{2},$$

$$T_{1} = \frac{\gamma}{c} [q_{j}(0) - g_{0} + ca_{1}T_{2} \exp(-a_{2})],$$

$$T_{2} = [T_{j}(0) - T_{w}(0)] / [\exp(-a_{2}) - 1].$$

Значения

$$T_i(0), q_i(0), N(0)$$
 (9)

берем из результатов [9] обработки экспериментов [6–8]. На рис. 1 представлены экспериментальные зависимости $N = F(\Delta T)$ для трех элементов: никеля, меди и германия; в табл. 1 указаны их теплофизические свойства. Для каждого из этих элементов существует критическое переохлаждение $\Delta \overline{T}$: в окрестности $\Delta T = \Delta \overline{T}$ при малом изменении ΔT наблюдается резкое изменение скорости N. В соответствии с этим проводим расчеты для докритической области $(0 < \Delta T < \Delta \overline{T})$ и для

Таблица 1. Теплофизические свойства никеля, меди и германия

	с, Дж/(м³∙град)	λ, Вт/(м·град)	L, Дж/(м ³)	$\Delta \overline{T}$, град	<i>T</i> _c , K
Ni	5,77-10 ⁶	69	2,14-109	160	1728
Cu	4,12-106	175	1,77-109	185	1357
Ge	1,99.106	17,4	2,54-109	212	1210

Рис. 1. Экспериментальные зависимости «переохлаждение – скорость роста»: Ni, [6] – a; Cu, [7] – b; Ge, [8] – a

закритической области, $\Delta T > \Delta \overline{T}$. Важно отметить, что в докритической области функция состояния V(u) имеет знакопеременную выпуклость, и фазовый переход удовлетворяет ограничениям (5); в закритической области имеем знакопостоянную нелинейность функции V(u) – процесс удовлетворяет условиям (4). Мы предполагаем, что в каждой экспериментальной точке $\Delta(\Delta T, N)$ измеренная скорость ФК равна неотрелаксированному значению N(t = 0). Тогда из (7) с помощью (9) вычисляем кинетический коэффициент

роста:

$$\mu = \frac{N(t=0)}{T_c - T_i(t=0)}$$

соответствующий фиксированному переохлаждению ΔT расплава. При работе с балансом энергии (2) применяем формулу:

$$u_{j} - u_{*} = \int_{T_{*}}^{T_{*}} c^{*}(T) dT + \int_{T_{c}}^{T_{j}} c^{j}(T) dT.$$

Здесь зависимость c'(T) аппроксимируется непрерывной двухзвенной линией вида:

$$c_{1}^{J}(T) = \frac{c_{11}T + c_{21}T^{2} + c_{31}T^{3}}{(T_{c} - T)^{a}}, T \in [T^{1}, T_{c}] 0 < a < 1;$$

$$c_{2}^{J}(T) = c_{0} + c_{1}T, \quad T_{w} < T \le T^{1}.$$
 (10)

Эти два звена «сшиваем» непрерывным образом при $T = T^1$. Для приближенного аналитического описания теплофизических свойств c(T), $G(T) = \lambda(T)/\gamma(T)$ в окрестности $T = T_c$ применяем экспериментальные измерения [6–8], справочные данные [11] и аппроксимирующие функции, построенные в [9]; подробности этих вычислений здесь не приводятся. Вне малой температурной окрестности точки перехода $T = T_c$ берем в твердой фазе $\gamma^j \equiv \text{const}, \lambda^j = \lambda_0 + \lambda_1 T$ и функцию (10).

Численное решение задачи с неизвестной границей $x = x_j(t)$ удобно выполнять в переменных z, τ ; $z = x/x_j$, $\tau = x_j$, $z \in [0, 1]$. Уравнения (1) принимают форму записи:

$$N\left(\tau \frac{\partial u}{\partial \tau} - z \frac{\partial u}{\partial z}\right) + \frac{\partial q}{\partial z} = 0,$$
$$N\left(\tau \frac{\partial q}{\partial \tau} - z \frac{\partial q}{\partial z}\right) + \frac{\tau q}{\gamma} + \frac{\partial V}{\partial z} = 0$$

где $u(z, \tau), q(z, \tau), N(\tau)$ – неизвестные функции, которые должны удовлетворять условиям (2), (6), (7), (8). Решение этой краевой задачи выполняем численным методом интегральных соотношений А. А. Дородницына; применяем гиперболический вариант алгоритма построения расчетной схемы [12]. В п-ом приближении отрезок [0, 1] делится на *п* полос: z = i/n, i = 0, 1, ..., n. В данной задаче n = 6. Строим замкнутую систему интегральных соотношений и редуцируем их к аппроксимирующей системе обыкновенных дифференциальных уравнений. Итоговая задача Коши решается методом Рунге-Кутта пятого порядка точности. В результате получаем температуру $T(z_i, \tau)$ и тепловой поток $q(z_i, \tau)$ на границах полос. Контроль точности расчетной схемы основан на использовании различных проверочных вариантов построения «кусочных» аппроксимаций. Кроме того, выполнялось сравнение с точным решением нелиNi

Cu

Ge

нейных уравнений (1). Проведенные тестовые расчеты подтвердили высокую точность вычислений.

Результаты и их обсуждение

При обработке результатов применяем следующие критерии:

- тепловой аналог числа Маха:

$$M_j^2 = \frac{N^2}{w^2(T_j)}, \quad M_*^2 = \frac{N^2}{w^2(T_*)};$$

- параметр неравновесности:

$$\Omega^{-2} = \left(\frac{q^2}{u^2 w^2}\right)_j;$$

- критерий температурной нестационарности:

 $\begin{array}{c} & & \\$

- критерий нестационарности теплового потока:

$$V_q = \frac{\partial q_j}{\partial t} \left/ \frac{q_j}{\gamma} \right|$$

Релаксационные свойства ФК для всех трех рассмотренных веществ (Ni, Cu, Ge) одинаковые: характерной является апериодическая зависимость от времени с выходом на стационарное плато. Основные результаты расчетов представлены в табл. 2-4; энтропийные свойства процесса даны на рис. 2. Содержание табл. 2-4 подробных комментариев не требует. Отметим только два обстоятельства: 1) нужно обратить внимание на своеобразное поведение чисел Маха в докритической и закритической областях; 2) только для меди характерна экспоненциальная зависимость $\mu = \mu(\Delta T)$; для никеля и германия хорошая аппроксимация достигается полиномами второй степени по ΔT ; величина µ дана в м/(К·с).

Рис. 2. Зависимости производства энтропии ω, Вт/(К·м²) на фронте роста от изменения локально-неравновесной энтропии Δ*S*, (Вт·с)/(К·м³) для Ni, Cu и Ge; левый столбец – докритическая область, правый столбец – закритическая область

∆Т, К	N _{r ≃ 0} , м/с	$\left(\frac{\partial T_j}{\partial t}\right)_{t=0}, \mathrm{K/c}$	$(V_T)_{t=0}$	$\left(\frac{\partial q_j}{\partial t}\right)_{t=0},$ BT/(M ² ·c)	$(V_q)_{t=0}$	$\left(\frac{\partial N}{\partial t}\right)_{t=0}$, m/c ²	M ² ,	M ²	Ω^{-2}	N _{!→∞} , м/с
Докритическая область										
$\mu = -1238_{2}44 + 53,13659\Delta T - 0,176627\Delta T^{2}, \Delta T \in [60, 150] \text{ K}$										
67,4	3,07	1,49-10 ²	8,11.10-9	6,87·10 ¹⁶	-0,269	$-2,29 \cdot 10^{5}$	1071	0,051	$2,24 \cdot 10^{2}$	2,14
90,7	5,60	5,98-10 ²	3,25.10-8	$6,01 \cdot 10^{17}$	-0,425	$-1,28 \cdot 10^{6}$	2330	0,159	4,61.103	2,58
119,2	10,26	2,04-10 ³	1,11-10 ⁻⁷	2,73.1018	-0,597	$-5,23 \cdot 10^{6}$	5862	0,523	3,67.104	3,21
136,3	13,55	3,47·10 ³	1,89.10-7	6,28·10 ¹⁸	-0,669	$-9,51 \cdot 10^{6}$	8183	0,909	1,23.105	3,64
	Закритическая область									
$\mu = -1.431334 + 0.066524\Delta T - 2.95453210^{-6}, \Delta T^2, \Delta T \in [160, 300] \text{ K}$										
184,3	34,26	$6,23 \cdot 10^{6}$	1,23-10-5	6,03·10 ¹³	-0,065	$-6,70 \cdot 10^{7}$	0,247	1036	7,51-10-12	5,76
208,2	39,25	7,24.106	1,42.10-5	2,26.1014	-0,101	-8,88-107	0,324	1361	4,61.10-11	6,22
242,6	46,71	8,73-10 ⁶	1,72.10	8,87·10 ¹⁴	-0,135	$-1,27 \cdot 10^{8}$	0,458	1931	3,87.10-10	6,95
290,2	56,74	1,07.107	2,11-10-5	3,10-1015	-0,169	$-1.89 \cdot 10^{8}$	0,674	2854	2,92.109	7,90

Таблица 2. Нестационарные свойства фронта кристаллизации никеля

Таблица 3. Нестационарные свойства фронта кристаллизации меди

∆ <i>T</i> , K	N _{t = 0} , м/с	$\left(\frac{\partial T_j}{\partial t}\right)_{t=0}, \mathrm{K/c}$	$(V_T)_{t=0}$	$\left(\frac{\partial q_j}{\partial t}\right)_{t=0},$ Bt/(M ² ·c)	$(V_q)_{t=0}$	$\left(\frac{\partial N}{\partial t}\right)_{t=0}, \ \mathbf{M/c^2}$	M_{j}^{2}	M .2	Ω 2	N _{1→∞} , м/с
Докритическая область										
$\mu = 2178,6955 - 16370,43 \exp(-0.026866549\Delta T), \Delta T \in [190, 170]$ K										
95,1	10,9	5,11-103	$1,02 \cdot 10^{-7}$	7,13·10 ¹⁷	-0,266	$-4,65 \cdot 10^{6}$	197,7	0,071	6,25-10 ¹	7,23
119,5	19,7	2,05.104	3,99.10.7	5,25.1018	-0,397	$-3,05 \cdot 10^{7}$	555,4	0,197	1,50.103	8,41
140,3	25,2	2,93.104	5,82.10-7	1,09.1019	-0,466	$-5,27 \cdot 10^{7}$	834,7	0,317	4,39.103	9,21
	Закритическая область									
$\mu = 35,326602 - 851,17268 \exp(-0,019538945\Delta T), \Delta T \in \{180, 230\} \text{ K}$										
190,2	47,2	1,44.107	7,44.10-5	1,83.1017	-0,254	$-2,11\cdot10^{8}$	0,149	10,63	1,27.10-5	11,57
210,2	69,1	2,18 107	1,31.10	6,64·10 ¹⁷	-0,35	$-4,66 \cdot 10^{8}$	0,314	22,55	8,79.10 5	12.78
230,6	84,0	2,63.107	1,36.10-4	1,21.1018	-0,408	$-6.82 \cdot 10^{8}$	0,470	33,89	1,84-10-5	13,57

Таблица 4. Нестационарные свойства фронта кристаллизации германия

Δ <i>Τ</i> , K	N _{t = 0} , м/с	$\left(\frac{\partial T_j}{\partial t}\right)_{t=0}, \mathrm{K/c}$	$(V_7)_{t=0}$	$ \begin{pmatrix} \frac{\partial q_j}{\partial t} \\ \frac{\partial t}{\partial t} \end{pmatrix}_{t=0}, \\ BT/(M^2 \cdot C) $	$(V_q)_{t=0}$	$\left(\frac{\partial N}{\partial t}\right)_{t=0}, \ \mathbf{M}/\mathbf{c}^2$	M_j^2	M^{2}	Ω-2	N _{t→x} , м/с
Докритическая область										
$\mu = -4745,333 + 32,54902\Delta T, \Delta T \in [195, 212] \text{ K}$										
200,5	2,85	44,24	6,59.10 9	5,96·10 ¹⁷	-0,439	$-7,89 \cdot 10^{4}$	9506	0,013	5,08·10 ⁵	2,66
210,7	3,81	167,5	2,49.10-8	1,05.1018	-0,523	$-3,54 \cdot 10^{5}$	16940	0,024	1,11.106	2.98
	Закритическая область									
$\mu = -3.07396 + 0.02457247\Delta T - 2.55986 \cdot 10^{-5} \cdot \Delta T^2, \Delta T \in [216, 305] \text{ K}$										
232,5	5,19	$5,42 \cdot 10^5$	4,48.10-5	2,54-1016	-0,438	$-6,83 \cdot 10^{5}$	0,315	28,69	2,96.10-3	3.73
250,7	6,11	8,00-10 ⁵	6,61.10-5	3,03.1016	-0,486	$-1,18 \cdot 10^{6}$	0,438	40,39	2,71.10-3	3,98
279,1	7,55	1,13-10 ⁶	9,33.10-5	3,14-1016	-0,547	$-2,03 \cdot 10^{6}$	0,667	62,75	2,30.10-3	4,46
300,2	8,45	1,39.106	1,11-10-4	3,19-1016	-0,579	$-2,67 \cdot 10^{6}$	0,836	19,73	2,13-10-3	4,75

Выводы

На основе теории локально-неравновесного теплопереноса разработан способ извлечения новой физической информации из экспериментальных зависимостей «переохлаждение – скорость роста кристалла». Представленный алгоритм позволяет рассчитать нестационарные и энтропийные свойства фронта высокоскоростной кристаллизации в каждой точке измерений (ΔT , N). Для трех изученных веществ (никель, медь, германий) установлены зависимости $\mu(\Delta T)$ кинетического коэффициента роста от переохлаждения расплава в докритической и закритической областях.

Обозначения

T – температура, К; x – декартова координата, м; t – время, с; q – удельный тепловой поток, Вт/м²; λ – коэффициент теплопроводности, Вт/(м·град); c – объемная теплоемкость, Дж/(м³·град); γ – время релаксации теплового потока, с; x_w – координата левой границы закристаллизовавшейся области, м; $w = (\lambda/\gamma c)^{1/2}$ – скорость распространения тепловых возмущений, м/с;

9

L – теплота кристаллизации единицы объема вещества, Дж/м³; ΔT – переохлаждение расплава, К; T_c – равновесная температура затвердевания, К; (ΔS)_{eq} – изменение локально-равновесной энтропии, Дж/(К·м³); ΔS – изменение локально-неравновесной энтропии, Дж/(К·м³); ω – производство энтропии на ФК, Вт/(К·м²); N – скорость перемещения фронта кристаллизации м/с; μ – кинетический коэффициент, м/(К·с).

Индексы: • и *j* – значения функций, вычисленных справа (жидкая фаза) и слева (кристаллическая фаза) от фронта кристаллизации; *w* – значения функций на левой границе.

Литература

- Васильев, В. А. Высокоскоростное затвердевание расплава (теория, технология и материалы) / В. А. Васильев, Б. С. Митин, И. Н. Пашков и др. – М.: СП ИНТЕРМЕТ ИНЖИНИРИНГ, 1998. – 400 с.
- Aziz, M. J. Continuous growth model for interface motion during alloy solidification / M. J. Aziz, Th. Kaplan. // Acta Metallurgica. - 1988. - 36. - P, 2335-2347.
- Galenko, P. K. Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions / P. K. Galenko, D. A. Danilov // J. Crystal Growth. - 1999. - 197. -P. 992--1002.

- Шабловский, О. Н. Закономерности корреляции между скоростью роста кристалла и переохлаждением расплава / О. Н. Шабловский // Расплавы. – 2003. – № 4. – С. 52–60.
- Шабловский, О. Н. Релаксационный теплоперенос в нелинейных средах / О. Н. Шабловский. – Гомель: ГГТУ имени П. О. Сухого, 2003. – 382 с.
- Herlach, D. M. Direct measurements of crystal growth velocities in undercooled melts / D. M. Herlach // Materials Science and Engineering. - 1994. - A179/A180. - P. 147-152.
- Battersby, S. E. Microstructural evolution and growth velocity-undercooling relationships in the systems Cu, Cu-O and Cu-Sn at high undercooling / S. E. Battersby, R. F. Cochrane, A. M. Mullis // Journal of Materials Science. - 2000. - 35. -P. 1365-1373.
- Battersby, S. E. Growth velocity-undercooling relationships and microstructural evolution in undercooled Ge and dilute Ge-Fe alloys / S. E. Battersby, R. F. Cochrane, A. M. Mullis // Journal of Materials Science. – 1999. – 34. P. 2049–2056.
- Шабловский, О. Н. Тепловые свойства фронта кристаллизации однокомпонентного чистого переохлажденного расплава / О. Н. Шабловский, Д. Г. Кроль // Расплавы. – 2005. – № 4. – С. 69–81.
- Шабловский, О. Н. Нелинейные релаксационные тепловые процессы при высокоскоростной кристаллизации / О. Н. Шабловский // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2002. – № 2. – С. 49–54.
- Зиновьев, В. Е. Теплофизические свойства металлов при высоких температурах / В. Е. Зиновьев. – М.: Металлургия, 1989. – 384 с.
- Коробейников, В. П. Задачи теории точечного взрыва / В. П. Коробейников. – М.: Наука, 1985. – 400 с.

Shablovskii O. N. and Krol D. G. Calculation of kinetic parameters of crystallization front of deep over-cooled melt.

Experimental dependence of the crystal growth rate on overcooling of the melt is studied from the viewpoint of the theory of locally non-equilibrium heat transfer. The propagation of the front of high-speed crystallization is simulated numerically. Calculations of non-stationary, entropic and kinetic properties of the phase border for nickel, copper and germanium are presented.

Поступила в редакцию 06.12.2006.

© О. Н. Шабловский, Д. Г. Кроль, 2007.