Доклады Академии Наук СССР 1939. том XXIII, № 2

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

и. и. китайгородский и т. н. кешишян обжиговый муллитовый огнеупор

(Представлено академиком И.В.Гребенщиковым 22 И 1939)

Стекольная промышленность стала в последнее время применять электролитой муллитовый стеклоприпас типа Corhart. Получение его связано с электроплавкой высокоглиноземистой шихты и последующей кристаллизацией и студкой отлитых брусьев.

Стоимость такого стеклоприпаса из-за сложности технологического процесса в несколько раз выше стоимости стеклоприпаса, изготавливаемого обычными керамическими методами. Однако все страны его применяют, так как муллитовый стеклоприпас обладает ценными для стекольной технологии качествами: а) высокой огнеупорностью; б) высокой стеклоустойчивостью.

Лаборатория технологии стекла Московского химико-технологического института им. Менделеева в 1936 г. поставила перед собой задачу получить методом обжига огнеупор, который по своим качествам не отличался бы от электроплавленого муллита типа Corhart. Для этой цели была выбрана смесь из SiO_2 — Al_2O_3 —MgO, и на основе диаграммы равновесия этой системы были подобраны составы, которые подвергнуты были изучению. Из исследованных составов наиболее отвечающим поставленным задачам оказался состав: 72% Al_2O_3 , 25% SiO_2 , 3%MgO. В качестве сырья были взяты (табл. 1):

Таблица 1

	SiO_2	$\mathrm{Al_2O_3}$	${ m Fe_2O_3}$	CaO	MgO	Потери при про- каливании
Глинозем	0.95 43.91	89.95 39.16	0.09 0.48 Симиче	_ 1.48 ски чи	 0.61 стая	9.34 14.25

Шихта, рассчитанная на $100\,\mathrm{r}$ обожженного черепка, увлажнялась добавкой $20-25\,\mathrm{cm}^3$ воды.

В металлических цилиндрических формах трамбованием были изготовлены стандартные цилиндры с $d=38\,$ мм и высотой $45-48.5\,$ мм. Сушка цилиндров производилась при 110° в течение 2 суток. Обжигались они в течение 24 часов в керосиновой печи с выдержкой 5-6 часов при 1500° .

После первого обжига исследование образцов показало:

Огневая усадка—10.6%, объемный вес—2.02 г/см³, водопоглощение—16.03%, кажущаяся пористость—36.0%.

Второй обжиг тех же образцов был произведен в криптоловых печах.

Обжиг продолжался 5 часов. Максимальная температура обжига равнялась 1725° и была выдержана в течение 30 минут. Второй обжиг дал допол-

нительную 10% усадку образцов.

Микрошлифы образцов после второго обжига показали следующее. Образцы содержат крупные единичные кристаллы и пучки муллита, расположенные среди мелкокристаллической также муллитовой массы. Кроме муллита весь образец содержит мелкие зерна корунда, которые обнаруживаются как в мелкозернистой основной массе, так и в крупных кристаллах.

Образцы огнеупора исследовались на огнеупорность, объемный вес, водопоглощение, кажущуюся пористость, удельный вес, содержание муллита и корунда в черепке (обработкой плавиковой кислотой), стеклоустойчивость и термическую прочность (погружением в воду нагретых до 850° образдов). Считаем нужным несколько подробнее остановиться на методе определения стеклоустойчивости.

Для сравнительного определения стеклоустойчивости полученного нами материала были приготовлены кубики из него, а также из плавленого муллитового черепка типа Corhart и из обычной горшковой массы. Кубики эти обрабатывались (варились) в баритовом кроне следующего химического состава (в %): SiO_2 32.20, B_2O_3 13.20, BaO 45.90, ZnO 3.50, Al_2O_3 3.15, As_2O_3 1.60. Выдержка длилась 6 часов. Во все время выдержки поддерживалась температура 1 300°.

После варки в стекле кубики были очищены от приставшего к ним стекла обработкой разбавленной вдвое концентрированной соляной кис-

лотой (удельный вес 1.19).

Потеря в весе кубиков дала сравнительную степень разъедания последних. Результаты испытания приведены в табл. 2.

• Таблица 2

Наименование материалов	Вес об- разца в г	Поверх- ность в см ²	Потеря веса в г	Потеря веса в % к нач. весу	Потеря веса в г (см²• •час)
Обычный горшковый материал	2.5058	7.26	0.7288	29.0	0.016
Плавленый муллит	3.7610	7.26	0.4760	12.7	0.011
муллит)	3.4550	7.26	0.3700	10.6	0.008

Эта таблица весьма наглядно иллюстрирует высокую стеклоустойчивость полученного материала.

Выводы. 1. В результате применения состава системы SiO_2 — Al_2O_3 — MgO получен высокоустойчивый огнеупорный материал. 2. В качестве сырья применялись каолин, чистая окись алюминия и окись магния. 3. Образцы изготовлялись способом трамбования. 4. Обжиг велся в два приема: первый обжиг—до $1\,500^\circ$ с выдержкой при этой температуре 5-6 часов; второй обжиг—до $1\,700-1\,725^\circ$ с выдержкой при этой температуре 30 минут.

Полученный в 1936 г. лабораторией МХТИ им. Менделеева огнеупор характеризуется следующими данными:

Содержание муллита и корунда в черепке—81.7%, огнеупорность— $1\,800^\circ$, объемный вес—2.68—2.69, водопоглощение—0.5—3.4%, кажущаяся пористость—1.2—9.0%, удельный вес—3.186—3.189, истинная пористость—15—16%, стеклоустойчивость (потеря в весе)—0.008 г/см²-час, термическая прочность—11—36 теплосмен.

Полученный в лабораторных условиях результат позволяет приступить к промышленной проверке свойств обжигового муллитового стеклоприпаса.

Кафедра технологии стекла Московского химико-технологического института им. Д. И. Менделеева. Поступило 25 II 1939.