Доклады Академии Наук СССР 1939. том XXII, № 1

ФИЗИКА

В. Л. ГРАНОВСКИЙ

О ВРЕМЕНИ ВОССТАНОВЛЕНИЯ УПРАВЛЯЕМОСТИ В ГАЗОВОМ РАЗРЯДЕ

(Представлено академиком С. И. Вазиловым 27 XI 1938)

В известных статьях Халла и Лэнгмюра (1, 2), содержавших изложение основных принципов электростатического управления газовым разрядом, было наряду с другими вопросами обрисовано значение процесса деионизации. В стационарном разряде отрицательно-заряженная сетка окружена ионной оболочкой, в которой сосредоточено все поле сетки. При обычных значениях плотности разрядного тока и сеточного напряжения толщина ионной оболочки мала сравнительно с диаметром отверстий сетки; сетка не влияет на разрядный ток. С прекращением разряда плотность ионов падает, и толщина ионного слоя вокруг сетки растет. По истечении некоторого времени толщина слоя ионов х становится равной R — радиусу отверстия сетки. Тогда сетка вновь становится способной запирать разряд. Это «время восстановления управляемости» [Freiwerdezeit по Герману (7)] зависит от начальной толщины слоя ионов, следовательно от силы разрядного тока і, давления газа р, напряжения сетки Ug относительно плазмы; далее, от скорости деионизации, следовательно от общей конфигурации твердых поверхностей трубки и еще раз от давления газа; наконец от радиуса отверстий сетки R. Для этого промежутка времени * Халл и Лэнгмюр дали без вывода следующую формулу, которую они характеризовали, как «полуэмпирическую»:

$$\theta = \frac{0.0012 \ p \cdot i^{0,7}}{U_q^2} \ , \tag{1}$$

где *d* — расстояние от сетки до анода. Эта формула перепечатывалась затем в книгах и обзорных статьях по ионным приборам без какоголибо анализа.

Между тем простой расчет, опирающийся на физические представления, развитые Халлом и Лэнгмюром, и на некоторые твердо установленные факты, приводит к совершенно иной формуле.

^{*} Халл и Лэнгмюр называли его «временем депонизации»; однако в настоящее время мы различаем эти два понятия. Время деионизации есть тот промежуток времени, в течение которого плотность ионов падает ниже некоторого заданного предела; в отличие от «времени восстановления управляемости» оно мало зависит от диаметра проволок сетки, от ширины отверстий между ними и от напряжения сетки (если последнее не очень велико). Формула Халла и Лэнгмюра (¹) относится именно ко «времени восстановления управляемости».

Будем исходить из следующих положений.

1. На сетку идет только понный ток; электронная компонента тока равна нулю. Этим предполагается, что $U_g < 0$ и по абсолютной величине не очень мало.

2. Ток понов к сетке ограничен пространственным зарядом. Толщина ионного слоя вокруг сетки x определяется плотностью ионного тока j. При низком давлении, когда длина свободного пробега иона λ_i ≫ x, можно воспользоваться формулой, данной И. Лэнгмюром и К. Блоджетт (³) для цилиндрической конфигурации:

$$j = \frac{5.41 \cdot 10^{-8} \cdot U_g^{\frac{3}{2}}}{\sqrt{\overline{M}} \cdot r^2 \cdot \beta^2 \left(\frac{r+x}{r}\right)},$$
(2)

где r — радиус проволок сетки, M — молекулярный вес газа, β^2 — определенная функция. Если сетка представляет собой диск с просверленными отверстиями или конструкцию в виде воронки, то можно пользоваться той же формулой (2), но вместо $\beta^2 \left(\frac{r+x}{r}\right)$ должна стоять другая функция $\beta_1^2 \left(\frac{R-x}{R}\right)$ (случай внутреннего катода), причем R — радиус отверстия сетки. При более высоких давлениях мы должны вместо (2) пользоваться одной из формул, выведенных Мак-Карди (4) или Астоном и учитывающих давления газа p. Мы можем для общности написать

$$j = \frac{cU_g^{\mathrm{x}}}{p^{\mathrm{Y}} \cdot f(x)}.$$
(3)

При этом в случае Лэнгмюра $\alpha = \frac{3}{2}$; $\gamma = 0$; в случае Мак-Карди $\alpha = \frac{3}{2}$, $\gamma = \frac{1}{2}$; в случае Астона $\alpha = 2$, $\gamma = 1$.

Функция f(x) содержит, как параметр, радиус проволок сетки или радиус отверстия сетки; в константу с входит молекулярный вес газа. В формулах (2) и (3) мы отбрасываем поправку $\left(1+0.0247 \sqrt{\frac{T_i}{U_g}}\right)$, учитывающую начальную скорость ионов, так как не располагаем данными о последней. Однако эта неточность сказывается только йри

малых значениях U_g .

3. Плотность ионного тока убывает в стадии деионизации по экспоненциальному закону

$$j = j_0 e^{-\frac{t}{2}}$$
 (4)

При низких давлениях скорость исчезновения основной массы ионов с достаточной стеценью точности передается этим законом, см. (⁵, ⁶, ⁷, ⁸, ⁹, ¹⁰).

Вообще говоря, спад ионного тока происходит по более сложному закону (¹⁰). Однако в условиях, практически имеющих место, например в тиратроне с парами ртути, отступления от формулы (4) становятся заметны только в конце деионизации. Эта неточность так же, как и предыдущая, может сказаться только при малых U_g .

4. Ход деионизации не зависит от приложенного сеточного напряжения U_g . Это положение также установлено

30

опытом; см. (⁶, ⁷, ¹⁰, ¹¹). В последних опытах автора было найдено, что только напряжения порядка 1 kV и выше заметно ускоряют ход деионизации ртутного пара при давлениях до нескольких десятков р. 5. Управляемость разряда восстанавливается, когда x = R.

Этих предположений достаточно для вывода. Из формул (3) и (4) находим:

$$\frac{c U_g^a}{p^{\gamma} \cdot f(x)} = \dot{j}_0 e^{-\frac{t}{\tau}}.$$

 $\frac{c U_g^{\lambda}}{p^{\gamma} \cdot f(R)} = j_0 e^{-\frac{\Theta}{\tau}}.$

К моменту времени $t = \Theta$ x = R; следовательно

Отсюда

$$\Theta = \tau \cdot \ln \frac{j_0 p^{\gamma} \cdot f(R)}{c U_a^{\gamma}} \,. \tag{5}$$

В частности, для низкого давления $\left(\alpha = \frac{3}{2}, \gamma = 0\right)$ и проволочной сетки $\left[f(R) = r^2 \cdot \beta^2 \left(\frac{R}{r}\right)\right]$

 $\Theta = \tau \left[16.75 + \ln \frac{j_0 \sqrt{M} \cdot r_p^2 \beta^2 \left(\frac{R}{r}\right)}{U_g^2} \right].$ (5')

Таким образом вместо степенной зависимости Θ от *i* и U_g , следующей из формулы Халла и Лэнгмюра (1), мы получаем логарифмическую зависимость (5)*. Зависимость от конфигурации электродов и стенок учитывается временной постоянной депонизации τ . Зависимость от давления также входит в величину τ , кроме того *p* влияет на величину $j_0 \left| \frac{\partial j_0}{\partial p} > 0 \right|$ и наконец *p* входит непосредственно в формулу (5).

Для сравнения обенх формул с данными опыта мы располагаем в настоящее время рядом более новых и более полных данных в работах Германа (7) и Л. С. Друскиной и А. В. Красилова (¹²). Зависимость Θ от U_g при различных R, j_0 и p в работе Германа представлена на фиг. 17 и 18. Из приведенных там крпвых обработаем три наиболее надежные: при R = 1.35 мм, p = 6.5 µ, $U_a = 240$ V, i = 0.08 A (обозначим ее a), при R = 1.35 мм, p = 6.5 µ, $U_a = 120$ V, i = 0.8 A (обозначим b) и при R = 3 мм, p = 9.5 µ, $U_a = 100$ V, i = 0.8 A (обозначим c); остальные содержат либо явные неправильности, либо недостаточное число точек. При обработке мы возьмем вместо U_g потенциал сетки относительно катода; в стадии депонизации это не должно дать большой ошибки, так как катодное падение потенциала исчезло. По формуле Халла и Лэнгмюра (1) график зависимости 1g Θ от 1g U_g должен быть прямой линией с угловым коэффициентом $-\frac{3}{2}$. На фиг. 1 представлены данные Германа в логарифмическом масштабе; для сравнения на фигуру нанесена прямая, соответствующая формуле (1), т. е. с наклоном $-\frac{3}{2}$. Очевидно, что все три экспериментальные кривые совершенно не согласуются с формулой (1).

^{*} В первом приближении јо пропорционально і.

По найденной нами формуле (5) Θ должно быть линейной функцией $\lg U_g$. На фиг. 2 те же кривые *a*, *b* и *c* перестроены в полулогарифмическом масштабе ($\Theta - \lg U_g$). Мы видим, что в этом масштабе точки удовлетворительно ложатся на прямые линии за исключением самых малых напряжений (при $|U_g| < 8$ V), для которых предносылки вывода формулы (5) не имеют места.

Далее, сравнивая ход кривых a и b на фиг. 2, отличающихся значением силы тока i при одинаковых p и R, мы видим, что они идут параллельно. Экспериментатор подчеркивает в своих выводах, что при изменении силы тока i время восстановления Θ меняется на вели-

ОИГ. 1. — Сравнение экспериментальных данных Германа (пунктирные линии) с формулой Халла и Лэнгмюра (1) (сплошная линия).

Фиг. 2.— То же, с формулой (5).

чину $\Delta\Theta$, которая мало зависит от U_g , в то время как самое Θ сильно зависит от U_g . Математически это значит, что

$$\frac{\partial}{\partial U_g} \left(\frac{\partial \Theta}{\partial i} \right) = \frac{\partial^2 \Theta}{\partial U_g \partial i} \approx 0.$$

Такой результат действительно следует из формулы (5):

$$\frac{\partial \Theta}{\partial i} = \frac{\partial \Theta}{\partial j_0} \frac{\partial j_0}{\partial i} = \frac{\tau}{j_0} \frac{\partial j_0}{\partial i},$$

а в этом выражении τ совсем не зависит от U_g , а j_0 мало зависит (при не очень малых значениях U_g сеточный ток является током насыщения). Напротив, этот результат противоречит формуле (1), по которой

$$\frac{\partial^2 \Theta}{\partial U_g \partial i} = \text{const} \cdot \frac{p}{i^{0.3} U_a^{\frac{5}{2}} \cdot d} \neq 0.$$

Наконец из формулы (5) следует еще, что по наклону кривых $\Theta - \lg U_g$ можно вычислить временную постоянную деионизации τ . Именно $-\frac{\partial \Theta}{\partial \ln U_g} = \alpha \tau$. В работе Германа содержатся непосредственные измерения хода деионизации в условиях, соответствующих кривой *c* (рис. 15, кривая I - II). Из кривой *c* находим $-\frac{\partial \Theta}{\partial \ln U_g} = 64$ µсек. Полагая $\alpha = = \frac{3}{2}$ (низкое давление), получим $\tau = 43$ µсек. А непосредственные измерения Германа дают для начальной части кривой $\tau = 49$ µсек.

32

На фиг. З приведены данные, заимствованные из работы Друскиной и Красилова (¹²), найденные в тиратроне при различных значениях *i* (150 и 225 mA), но одинаковых прочих условиях. И здесь мы констатируем согласие с выводами формулы (5) в двух отношениях: кривые

 $\Theta - \lg U_g$ оказываются прямыми, кроме самых низких напряжений ($U_g = -5$ V); обе прямые, соответствующие i = 150 mA и i = 225 mA, идут параллельно.

Что касается отступлений, наблюдаемых при малых значениях U_g , то мы уже видели выше ряд оснований, по которым их можно ожидать именно при малых значениях U_g : электронная компонента тока, начальные скорости ионов, отступление от экспоненциального хода деионизации, различие потенциалов катода и плазмы — все обстоятельства, которыми мы пренебрегли при выводе формулы (5). Учет их однако сильно усложнил бы расчет и практически вряд ли мог бы быть использован.

Фиг. 3.—Сравнение экспериментальных данных Друскиной и Красилова с формулой (5).

Резюмируя, можно сказать, что формулы (5) и (5'), вытекающие из элементарных соображений теории и твердо установленных фактов, хорошо выражают зависимость времени восстановления управляемости разряда от силы разрядного тока, скорости процесса депонизации и управляющего напряжения, если последнее не очень мало.

Поступило 1 XII 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. W. Hull, Gen. El. Rev., **32**, 213 (1929). ² А. W. Hulla. J. Langmuir, Proc. Nat. Ac. Am., **15**, 218 (1920). ³ J. Langmuir a. K. Blodgett, Phys. Rev., **22**, 347 (1923). ⁴ W. H. Mc Curdy, Phys. Rev., **27**, 457 (1926). ⁵ Eckart, Phys. Rev., **26**, 454 (1925). ⁶ M. L. Pool, Phys. Rev., **30**, 848 (1927). ⁷ P. K. Hermann, Arch. für Elektr., **30**, 555 (1936). ⁸ G. Graf, Entionisierung in Quecksilberglassgleichrichtern. Диссертация (1935). ⁹ W. Koch, ZS. fürtechn. Phys., **17**, 446 (1936). ¹⁰ B. Л. Грановский, Изв. АН СССР, серия физич., № 4 (1938). ¹¹ С. Кепty, Phys. Rev., **32**, 624 (1928). ¹² Л. С. Друскина и А. В. Красилов, Электричество, **5**, 25 (1937).

З Доклады Акад. Наук СССР, 1939, т. ХХИ, № 1.