Доклады Академии Наук СССР 1938. том XVIII, № 1

АГРОФИЗИОЛОГИЯ

д. я. вакулин

К ВОПРОСУ ОБ ОТЗЫВЧИВОСТИ ЛЯЛЛЕМАНЦИИ (Lallemantia $iberica \ F \times M$) НА ЯРОВИЗАЦИЮ

(Представлено академиком А. А. Рихтером 2 XI 1937)

В засушливых районах СССР ляллеманция привлекает внимание как засухоустойчивое и скороспелое масличное растение. Ее жирное масло обладает исключительно высокими техническими показателями—высоким иодным числом и резко выраженной способностью к высыханию, что ставит его почти наряду с одним из лучших высыхающих масел—маслом периллы (Perilla ocimoides L.).

Изучая различные образцы ляллеманции, мы обнаружили некоторые формы ее, достаточно резко отличающиеся друг от друга по целому ряду признаков: длина вегетационного периода, высота куста, habitus, окраска венчика цветка, абсолютный вес семян, урожайность и т. д.

Формы эти следующие:

- 1. Форма с синими цветами, коротким вегетационным периодом, мелкими семенами и меньшей урожайностью.
- 2. Форма с белыми цветами, более длинным вегетационным периодом, сравнительно более крупными семенами и большей урожайностью.
- 3. Форма с розовыми или вернее бело-розовыми цветами, по внешнему виду напоминающая предыдущую.

Основные признаки их оказались константными. Формы с белыми и розовыми цветами связаны целым рядом переходных форм.

На некоторые формы у ляллеманции указывал еще Л. Жданов.

Для Кавказа указывается f. sulfurea Grossh. с беловато-желтыми цветами.

Что касается масличности, то по нашим данным выход масла у некоторых форм доходит до 37.23%.

Лучшую из обнаруженных нами форм—с бело-розовыми цветами № 55—мы в 1937 г. высеяли для испытания на небольшой площади в одном из колхозов Одесской обл. Опыт оказался весьма удачным несмотря на очень засушливое лето. Это указывает на то, что ляллеманция с успехом может итти и в засушливых районах.

Проводя работу с ляллеманцией, мы столкнулись с необходимостью нодвергнуть некоторые формы ее яровизации с целью выявить возможность управления развитием этой культуры.

Для яровизации были взяты 2 формы:

а) форма с синими цветами, урожая 1937 г., нашей репродукции № 90,

б) форма с бело-розовыми цветами, урожая 1937 г., нашей репродукции № 55.

Яровизация проводилась при температуре $+2^{\circ}$ (с колебаниями от +1 до $+3^{\circ}$) и $+25^{\circ}$ (с колебаниями от +24 до $+26^{\circ}$). Продолжительность яровизации была установлена в 11 дней с 23 III по 3 IV 1937 г., когда все варианты и были высеяны в Одесском ботаническом саду в грунт рядами по 15 м длиной в двух повторениях.

Предварительно отметим некоторые особенности прорастающих семян. При намачивании оказалось, что семена формы № 90 (синяя, с мелкими семенами) очень сильно и быстро ослизнились. Семена формы № 55 (розовая, с крупными семенами) почти не дали ослизнения. При осмотре в последний день перед высевом семена различных форм и вариаций опыта нахопились в следующем состоянии:

№ 55 при температуре $+25^{\circ}$ дал потемнение и даже почернение, а иногда и отмирание проростков; при температуе же $+2^{\circ}$ был в хорошем состоянии.

№ 90 при температуре $+25^{\circ}$ дал почти аналогичную картину, но отмирание проростков не было отмечено; при температуре $+2^{\circ}$ —в хорошем состоянии. Плесени ни в одном варианте не было в отличие например от периллы, яровизированной одновременно с ляллеманцией.

Все варианты высевались несколько перероспими. То обстоятельство, что семена несколько переросли и у некоторых из них при высокой темнературе почернели и даже начали отмирать проростки, на всхожести заметно не отразилось.

На протяжении всего вегетационного периода ляллеманции делались промеры яровизированных и неяровизированных растений, данные которых сведены в табл. 1.

Таблица 1

	Высота ляллеманции в см						
Форма № 90 с синими цветами	19 V	23 V	26 V	30 V	6 VI		
Контроль. Неяровизир	1420	6—10 22—30 3—4	8—16 25—37 4—6	1531 3442 613	16—39 36—50 6—16		

Яровизация начала сказываться на лядлеманции очень рано; уже всходы дали некоторые различия между подопытными и контрольными растениями, а к 15 мая, т. е. через месяц после всходов, разница была уже достаточно ощутительной; лядлеманция, яровизированная при температуре $+2^{\circ}$, была значительно выше и контроля, и варианта, яровизированного при температуре $+25^{\circ}$; эти последние производили впечатление довольно широких, распластавшихся по земле растений, у которых главного стебля не было еще заметно. 19 V, как видно из табл. 1, высота лядлеманции, яровизированной при температуре $+2^{\circ}$, была в 2.5 раза выше контроля и в 3—4 раза выше яровизированной при температуре $+25^{\circ}$, причем главный стебель у этой последней еще не был заметен. а у контроля начал только выделяться, в то время как у яровизированной при температуре $+2^{\circ}$ он достигал уже до 20 см.

Нужно заметить, что ляллеманция, яровизированная при температуре $\div25^\circ$, долго еще сидела как бы в «розетке», не давая роста в высоту, по зато разрастаясь в ширь.

В дальнейшем ляллеманция, яровизированная низкой температурой $(+2^\circ)$, еще более обогнала контроль и особенно яровизированную при

температуре $+25^{\circ}$.

К 6 VI эта ляллеманция достигала уже 36—50 см, контроль—16—39 см, яровизированная высокой температурой—только 6—16 см. К этому моменту первые два варианта в основном почти закончили свой рост; что же касается ляллеманции, яровизированной при температуре + 25°, то она к этому времени далеко еще не достигла своего нормального роста.

Наиболее выровненными были растения, яровизированные при температуре $+2^{\circ}$; контроль давал весьма неравномерное развитие растений (одни выше, другие ниже); в дальнейшем подобная же картина обнаружилась и у варианта, яровизированного при высокой температуре в $+25^{\circ}$.

На фиг. 1 показано состояние ляллеманции № 90 с синими цветами к 25 V 1937 г. Ляллеманция, яровизированная при температуре +2°

Фиг. 1.—Яровизация ляллеманции— Lallemantia ibericı $F \times M$. Форма № 90 с синими цветами. Снято 25 V 1937. I— контроль (неяровиз.), 2— яровизация при $+2^{\circ}$, 3— яровизация при $+25^{\circ}$

(на фиг. 1 посредине), значительно выше остальных вариантов; она находилась в полном цвету, в то время как контроль формировал только первые единичные цветы, а яровизированная при температуре +25° еще совсем не цвела. Эта же фигура показывает и их общий habitus.

Фиг. 2.—Яровизация ляллеманции № 90 и 55. Общий вид участка. Слева три рядка — форма № 90 с синими цветами (a—яровиз. при темп. 2° , b— яровиз. при темп. 2° , c— контроль). Справа три рядка — форма № 55 с бело-розовыми цветами (d—яровиз. при темп. 2° , e— яровиз. при темп. 2° , i— контроль).

На фиг. 2 показан общий вид участка ляллеманции № 90 и 55. Слева три рядка относятся к синей ляллеманции № 90 (a—яровизированной при температуре $+25^{\circ}$, b—яровизированной при температуре $+2^{\circ}$, c— контроль); правые три рядка № 55 (d—яровизированной

при температуре $+25^{\circ}$, e—яровизированной при температуре $+2^{\circ}$ и i—контроль).

Табл. 2 дает наглядное представление о фазах развития яровизированных и неяровизированных растений.

Таблица 2

Форма № 90 с синими цветами	По- Перв. сев всх.	Масс. Перв. всх. цвет.		Нач. созр.		Убор- ка	Период в днях от всходов			
									до цвет.	до совр.
Неяровизир. (контроль). Яровизир. при темпер. +2° Яровизир. при темпер. +25°	3 IV 3 IV	12—13 IV	15 IV 14 IV 15 IV	25—26 V 21 V 30 V—1 VI	30 V 23 V 10 VI	25 VI 15 VI 6 VII	21 VI	7 VII 23 VI 13 VII	45 39 57	77 67 87

Как видно из табл. 2, сроки зацветания у яровизированной ляллеманции были сильно сдвинуты по сравнению с контролем; первое цветение у яровизированной при температуре $+2^{\circ}$ наступило на 5 дней раньше, а у яровизированной при температуре $+25^{\circ}$ на 5 дней позднее, чем у контроля; массовое цветение у яровизированной при температуре $+2^{\circ}$ наступило на 7 дней раньше контроля, а у яровизированной при температуре $+25^{\circ}$ на 10 дней позднее контроля. Созревание у яровизированной при температуре $+25^{\circ}$ на 11 дней позднее по сравнению с контролем. Период в днях от всходов до цветения и созревания виден из двух последних граф табл. 2. В результате яровизации период созревания сократился на 10 дней при температуре $+25^{\circ}$ по сравнению с контролем. Интервал 20 дней. Таким образом яровизация низкой температуры укорачивает вегетационный период, яровизация высокой температуры удлиняет его.

После уборки растения были взвешены, подсчитаны и измерены. Данные этих манипуляций приводятся в табл. 3. Как видно из табл. 3, ярови-

Таблица 3

Форма № 90		3 HEHTO I'		Колич. ветвей	Вес на одно растение в г			
	Высота в см		Дл. бок. кисти		сырой	возд сух.	семян	
Неяровизир. (кон- троль)	28.5 44.4 24.8	19.1 26.6 16.7	9.8 13.0 14.3	9.2 6.4 9.6	14.9 14.0 23.8	10.6 11.9 14.1	3.2 3.8 2.2	

вация и здесь отразилась достаточно сильно. Высота растений при созревании у яровизированной при температуре $+2^{\circ}$ почти в 2 раза больше.

Длина центральной кисти у этого же варианта на 7.5 см больше контроля, в то время как у яровизированной при температуре $+25^{\circ}$ центральная кисть на 2.4 см короче контроля и на 10 см короче, чем у яровизированной при температуре $+2^{\circ}$. Центральный стебель, как и кисть, у ляллеманции, яровизированной при температуре $+25^{\circ}$, развивается слабо, он вообще недоразвит, с укороченными междоузлиями; за счет его, видимо, развиваются боковые ветви и их кисти. Наблюдения показали, что и цветение у центральных кистей этого варианта намного запаздывает не только по сравнению с другими вариантами опыта, но и с боковыми ветвями того же растения; в то время, как боковые ветви отцветают, центральная кисть только начинает цвести. Длина боковых кистей у яровизированных растений независимо от температуры больше, чем у контрольных.

Яровизация температурой $+2^{\circ}$ оказала на ляллеманцию почти противоположное действие по сравнению с температурой в $+2^{\circ}$. Междоузлия главного стебля при действии температурой в $+2^{\circ}$ стали быстро расти, удлиняться, и, когда листья понемногу стали сохнуть и опадать, в рядках можно было наблюдать просветы между растениями, чего у других вариантов опыта, особенно у яровизированных температурой в $+25^{\circ}$, не наблюдалось; кроме того цветение у яровизированных растений при температуре $+2^{\circ}$ началось раньше на главной кисти в противоположность растениям, яровизированным температурой в $+25^{\circ}$, где первым зацвели не главные кисти, а кисти боковых ветвей.

Подсчеты количества ветвей на 1 растение выявили следующую особенность: в то время как контроль и яровизированная при $+25^{\circ}$ почти не отличались между собой по количеству ветвей, ляллеманция же, к которой была применена температура $+2^{\circ}$, дала меньшее количество их на 1 растение, но они по размерам превышали контроль.

Вес вегетативной массы растений ко времени уборки находится, как оказалось, в коррелятивной связи с временем цветения; чем раньше зацветают растения, тем сырой вес их меньше, так как времени для накопления вегетативной массы у них было меньше (яровизированные при температуре $+2^{\circ}$). Наиболее же позднеспелые варианты (зацветающие позднее) дают и наибольший вес вегетативной массы на 1 растение (яровизированная при температуре $+25^{\circ}$).

Урожай семян, полученный в нашем опыте, говорит о том, что можно надеяться на некоторое увеличение урожайности синей ляллеманции (по крайней мере формы № 90) в случае применения яровизации при температуре в $+2^{\circ}$. Температура в $+25^{\circ}$ при яровизации значительно снижает урожай.

Таким образом ляллеманция N 90 с синими цветами на яровизацию низкой температурой (+2°) реагирует положительно.

Другая форма ляллеманции—№ 55 с бело-розовыми цветами—реагировала на яровизацию в тех же условиях несколько по-иному. Это конечно не должно вызывать удивления, ибо известно уже давно, что разные сорта и формы одного и того же вида по-разному реагируют на подобные воздействия.

Очевидно условия яровизации (температура, продолжительность, влажность), подходящие для одного, оказываются мало приемлемыми для другого.

Что касается ускорения цветения у формы № 55 (с бело-розовыми цветами), то надо сказать, что разницы между контролем и яровизированными вариантами почти не было. Яровизация сократила период до цветения всего лишь на 2—3 дня, а ко времени созревания и эта незначительная разница стушевалась; это относится к обоим температурным вариантам опыта. На росте в высоту, на общем габитусе и некоторых других

сторонах ляллеманции № 55 такого рода воздействие так же не отразилось (фиг. 2, d, e, i), более заметно выделяется только вес вегетативной (сырой) массы, воздушно-сухой вес и урожайность семян, что видно из табл. 4.

Таблица 4

_	Вес на 1 растение в г				
Форма № 55 с бело-розовыми цветами	сырой	воздсухой	семян		
Неяровизир. (контроль)	21.2 22.6 25.4	17.3 18.1 21.0	6.3 7.2 8.0		

Как видно из табл. 4, перевес по всем приведенным показателям остается на стороне яровизированных растений, причем в отличие от синей ляллеманции N = 90 яровизация температурой $+25^{\circ}$ дает больший эффект, чем температура $+2^{\circ}$. Особенно обращает на себя внимание урожай семян яровизированной ляллеманции.

Таким образом различные формы ляллеманции по-разному реагируют

на яровизацию.

Форма № 90 с синими цветами реагировала достаточно полно и сильно. Форма же № 55 с бело-розовыми цветами была частично задета этим воздействием (только в отношении веса растений и урожайности), причем температура в $+25^{\circ}$, в отличие от синей ляллеманции № 90, оказала более сильное влияние, чем температура $+2^{\circ}$.

Ботанический сад. Одесский государственный университет. Поступило 4 XI 1937.