Доклады Академии Наук СССР 1937. Том XV, № 6—7

ФИЗИОЛОГИЯ РАСТЕНИЙ

В. И. ТОВАРНИЦКИЙ и Т. Л. РИВКИНД

ГОРМОНИЗАЦИЯ СЕМЯН—ВОЗМОЖНЫЙ АГРОТЕХНИЧЕСКИЙ ПРИЕМ

(Представлено академиком А. Н. Бахом 31 III 1937)

Работами Шандера (1934) и рядом работ Н. Г. Холодного была изучена и выяснена роль гормонов семени при их прорастании (1933—1935), доказаны пути их транспорта и влияние на жизнедеятельность зародыша. В последних двух сообщениях (1936) Н. Г. Холодным была предложена научная теория яровизации и экспериментально доказана возможность дополнительного введения гормонов в семена извне путем намачивания их в гормонсодержащих растворах. При этом выявилось, что так называемая гормонизация зерна кроме активизации первых стадий прорастания оказывает и некоторое довольно длительное последействие, выражающееся в ускорении общего развития надземной массы, ускорении цветения и-как конечный результат-повышении урожая. Уже после окончания наших опытов нам стали известны новейшие работы Р. Поля (1936), который в этом направлении пошел еще дальше и доказал возможность не только извлечения гормонов из семени различными способами, но и возможность их повторного искусственного введения. Важно отметить, что кроме гетероауксина в этих опытах для гормонизации невсхожих семян применялись также сырые экстракты из мочи.

Исходя из тех же соображений, что и Н. Г. Холодный, но учитывая также возможную необходимость для растений и других гормональных факторов, мы провели в 1936 г. ряд небольших опытов по гормонизации семян яровой пшеницы, вики и сахарной свеклы мочой и вытяжкой из дрожжей с целью выяснения возможности практического повышения урожайности растений этим приемом. Отметим, что предварительные лабораторные исследования дали нам возможность выйти в 1936 г. со своими

опытами уже непосредственно в полевую обстановку.

Базируясь на ряде работ, мы в своих исследованиях 1936 г. в качестве гормонсодержащих вытяжек применяли разбавленную водой мочу жеребых и нежеребых кобыл, исходя при этом из следующих положений:

1. Работами Кегля доказано присутствие в моче ряда растительных гормонов: ауксинов а, b и гетероауксина (около 2 мг в 1 л), биоса, веществ типа ризолина и веществ группы В. Значимость всех этих веществ для растений доказана значительным количеством работ.

2. Рядом работ в моче доказано присутствие животных гормонов как полового ряда (фолликулин, тестикулин, эквилин, эквиленин и гиппулин), так и гипофизарного ряда. По влиянию на растения этих гормонов имеется большая литература, но данные противоречивы и окончательных выводов не дают. Между прочим положительное действие на растение эквилина и эквиленина отмечается в работах М. Жано (1934).

3. В моче доказано присутствие витаминов не только А и С, но и рядь В (В₁ и В₂; М. Roscoe, 1936), положительное влияние которых на растение

отмечалось неоднократно.

4. В моче присутствуют стерины, родственные некоторым гормонам и витаминам, а также флавины (урофлавин, Koschara, 1935), действие которых на растение еще достаточно не изучено, но которые повидимому могут тоже оказывать некоторое «стимулирующее» влияние и из которых сам растительный организм, возможно, может синтезировать необходимые ему соединения.

Таким образом, как видим, в моче мы имеем обильный своим разнообразием источник всяких жизненно необходимых веществ гормональной или близкой к ней природы, и задача заключалась бы следовательно в нахожлении соответствующих наиболее доступных способов практического

их использования.

Исходя из работ Нильсена (1931), Ната (1934), Виртанена (1933) и фон-Гаузен с дрожжами, а также из ряда других работ, установивших в связи с наличием в дрожжах веществ группы В, биоса и витаминов B_1 и B_2 положительное влияние их на высшие растения, мы в своих работах по гормонизации семян применяли также водные вытяжки (при кипячении) из свежих хлебных дрожжей.

Экспериментальная часть

Опыты 1936 г. проводились в полевых условиях на опытной базе института под Москвой на делянках различной величины: а) с пшеницей на делянках в 1 м² в четырехкратной повторности и в 50 м² в трехкратной повторности; кроме того часть опытов была заложена в колхозах на делянках в 250—1000 м² в двукратной повторности; б) с викой на делянках в 1 м² с четырехкратной повторностью и в) со свеклой на делянках в 1 м² по 20 корней с четырехкратной повторностью.

Исходя из тех же идей, что и Н. Г. Холодный, мы проводили обработку семян гормонсодержащими растворами двумя способами: в одном случае простым намачиванием семян в соответствующих растворах, а в другом—

с последующей яровизацией.

Большое и решающее значение в вопросе гормонизации семян таким гормональным сырьем, какое применялось в наших опытах, имеет концентрация раствора. Применимы только разведенные растворы, так как концентрированные делают семена невсхожими и убивают их жизнедеятельность.

Из первых положительных моментов, выявившихся в наших опытах, следует отметить асептические свойства мочи и хорошую защиту семян от плесени в условиях яровизации. В дальнейшем гормонизация сказалась на энергии кущения (увеличение до 30%) и на общем развитии растений пшеницы (табл. 1).

Заметных различий в наступлении отдельных фаз развития растений и созревания не установлено. Возможно, что причина этого кроется в сильно засушливых условиях 1936 г., повлекших за собой более быстрое созревание растений (на 1-11/2 м-ца) и сильно снизивших валовой сбор урожая.

Таблица 1

	Опы	Колхоз «Интерна- ционал»			
Делянки	В				
	Вес 100 ра- стений в г	Длина колоса в см	Толщина колоса в см	В период колошения	
				Вес 100 ра- стений в г	
L'ayımpayı (zasan anını					
Контроль (посев сухими семенами)	168	5.7	7.3	30	
Яровизация по Лысенко (вода) Гормонизация мочой 75% + яро-	209	6.5	8.0	39	
_ визация	198	6.3	8.3	59	
Гормонизация мочой 50% + яро-	242	7.8	10.4	55	
Гормонизация мочой 25% + яро- визация	214	7.3	8.7	40	

В опытах по гормонизации семян пшеницы мочой жеребых кобыл получены на микроделянках результаты, данные в табл. 2 и 3.

Таблица 2

	Гормонизация семян пше- ницы намачиванием Урожай в г			То же + яровизация		
Делянки						
Делинки	Зерно	Солома	Прибав- ка верна в %	Зерно	Солома	Прибав- ка зерна в %
Контроль (посев сухими семенами)	59.1 66.2 72.0 65.4	69.9 70.2 79.5 70.7	+12 +22 +11	50.0 69.5 68.2	66.7 67.2 75.1	- +17 +15

Таблица 3

71.	Гормонизация семян намачиванием $+$ яровизация			
Делянки	Зерно в кг	Солома в кг	Прибавка зерна в %	
Контроль (посев сухими семснами)	4.11 4.40 5.46 4.48	8.73 7.89 10.32 9.80	$\begin{array}{c} - \\ + 7.1 \\ + 32.8 \\ + 9.0 \end{array}$	

Как видим, во всех почти опытах выявилось положительное влияние гормонизации при определенных концентрациях мочи. В отдельных случаях прибавка урожая зерна достигала 20—30%. Отношение зерна к соломе складывается в гормонизированных посевах в пользу зерна. Зна-

чительно больший эффект с пшеницей получен от применения мочи нежеребых кобыл (табл. 4).

	Урожай с делянки в 1 м²			
Делянки	Зерно в г	Солома в г	Прибавка зерна в %	
Контроль (посев сухими семенами)	59.1 50.0 88.7 94.7 78.2	59.9 56.7 94.4 101.7 91.1	$ \begin{array}{c} - \\ +50 \\ +60 \\ +32 \end{array} $	

На основании этих данных, равно как и на основании больших работ, проведенных с кристаллическим фолликулином и не давших положительных результатов, мы приходим к выводу, что положительное действие гормонизации семян мочой следует приписать действию растительных гормонов: ауксинам, биосу и другим веществам группы В.

В опытах по гормонизации семян пшеницы вытяжками из дрожжей

(раса 12) получены результаты, приведенные в табл. 5.

Таблица 5

Делянки	Гормонизация намачи- ванием			То же + яровизация		
	Зерно	Солома в г	Прибав- ка зерна в %	Зерно	Солома в г	Прибав- ка зерна в %
Контроль (посев сухими семенами)	59.1	69.9	_	59.1	69.9	
Яровизация по Лысенко (вода)	_	_	-	56.5	96.2	± 5
Гормонизация дрожжами 1:10	78.8 76.4	92.0 104.6	$^{+33}_{+29}$	74.1 78.0	86.5 94.1	+25 +32

Отметим, что в то время как гормонизации семян растворами мочи способствовали более низкие температуры, требуемые условиями яровизации, в случае дрожжей сказалось даже простое намачивание семян.

В отличие от ишеницы второе участвовавшее в нашем опыте растение—вика—совершенно не поддавалась гормонизации. В краткой статье трудно изложить наши предположения на этот счет. Отметим только следующее: мы считаем, что условия гормонизации семян различных сельскохозяйственных культур будут сильно различаться не только по концентрации применяемых растворов, но и по температурным условиям, длительности намачивания и т. д.; кроме того иное строение семян бобовых потребует повидимому несколько иных подходов к их гормонизации.

Свекла была отзывчива на гормонизацию, и положительное действие ее сказалось уже с первых дней вегетации. В дальнейшем сильное различие по ботве сгладилось, но разница в весе корня сохранилась. В силу независящих от нас обстоятельств мы к сожалению не имели возможности довести свеклу до полного окончания вегетационного периода и были

вынуждены убрать ее преждевременно по достижении веса корня 100—150 г. Относящиеся сюда данные сведены в табл. 6.

Таблица 6

Делянки	Вес корня	Средний вес корня в г	% caxapa	Вес ботвы
Контроль	70—101 70— 92	88	17.1	108—149 100—124
Яровизация (вода)	78—127 122—151	107 134	16.2 17.1 17.1	110—161 162—213

На основании наших опытных работ 1936 г. мы считаем доказанной возможность практического использования гормонизации в поднятии урожайности сельскохозяйственных культур. Более подробное изложение о результатах работ 1936 г. будет дано в журнале «Биохимия».

Лаборатория биохимии. Всесоюзный научно-исследовательский институт северного зернового хозяйства и зернобобовых культур. Москва.

Поступило 31 III 1937.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ N. G. Cholodny, Ber. d. D. bot. Ges., 42 (1924); Jahrb. wiss. Bot., 65 (1926); Biol. Zbl., 47 (1927); Planta, 21, 4 (1934), 23 (1935). ² H. Г. Холодный, Природа, 8/9 (1933); 4 (1935); 3 (1936); Cob. бот., 2 (1935); Усп. совр. биол., IV, 6 (1935); ДАН, III, 8 (1936), III, 9 (1936). ³ V. Hartelius, Bioch. ZS., 261 (1933). ⁴ M. Janot, C. R., 198, 1175 (1934). ⁵ Fr. Kögl, ZS. physiol. Chem., 214 (1933); 228 (1934); 235 (1935); 242 (1936); 243 (1936); Ber. d. D. chem. Ges., 68 (1935). ⁶ Koschara, ZS. physiol. Chem., 232 (1935). ⁷ B. Nath, Nature, 134, 27 (1934). ⁸ N. Nielsen, Planta, 6 (1928); Jahrb. wiss. Bot., 73 (1930); Bioch. ZS., 237 (1931); 249 (1932); 256 (1932). ⁹ R. Pohl, Planta, 24, 523 (1935). ¹⁰ M. H. Roscoe, Bioch. Journ., 6, 1053 (1936). ¹¹ Schander, ZS. für B., 27 (1934). ¹² B. И. Товарницкий, Бюлл. ВАСХНИЛ, 6 (1936). ¹³ A. Virtanen, Nature, 132, 408 (1932); Bioch. ZS., 272, 32 (1934).