

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Нефтегазоразработка и гидропневмоавтоматика»

И. С. Шепелева

РАЗРАБОТКА НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по курсовой работе для студентов специальности
1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения

УДК 622.276+622.279(075.8) ББК 33.36я73 Ш48

Рекомендовано научно-методическим советом машиностроительного факультета ГГТУ им. П. О. Сухого (протокол № 10 от 11.05.2023 г.)

Рецензент: ведущий геолог по разработке нефтяных и газовых месторождений отдела проектирования и анализа разработки месторождений нефти и газа БелНИПИнефть РУП «Производственное объединение «Белоруснефть» А. О. Цыганков

Шепелева, И. С.

Ш48

Разработка нефтяных и газовых месторождений: учеб.-метод. пособие по курсовой работе для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» днев. и заоч. форм обучения / И. С. Шепелева. – Гомель: ГГТУ им. П. О. Сухого, 2024. – 42 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Подготовлено в соответствии с программой дисциплины «Разработка и эксплуатация нефтяных и газовых месторождений». Курсовая работа предназначена помочь студенту при решении комплексной задачи по разработке нефтяного месторождения, правильно и последовательно подойти к количественной оценке некоторых основных показателей разработки нефтяного месторождения.

Для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения.

УДК 622.276+622.279(075.8) ББК 33.36я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2024

ВВЕДЕНИЕ

Определение основных технико-экономических показателей является главной задачей проектирования или анализа разработки нефтяного и газового месторождения.

Количественная оценка различных вариантов разработки месторождения позволяет выбрать наиболее эффективный вариант, обеспечивающий максимально возможное извлечение углеводородов из недр при заданном уровне отбора и относительно НИЗКИХ капитальных затратах.

Как известно, объем технологических, гидродинамических и экономических расчетов по оценке основных показателей разработки месторождения исключительно велик, а аналитический расчет весьма трудоемок. Поэтому в настоящее время трудоемок.

Поэтому в настоящее время наиболее трудоемкая часть техникоэкономических расчетов выполняется на ЭВМ.

Вместе с тем аналитический как обязательный элемент методики обучения является эффективным средством изучения дисциплины. Он позволяет студенту глубже усвоить теоретический курс, осмысленно подойти к количественной оценке разработки, показателей ПОНЯТЬ последовательность экономических расчетов, без чего трудно дать объективную оценку машинного расчета, поскольку в основе программы заложены те же самые аналитические формулы и зависимости.

Предлагаемая курсовая работа предназначена помочь студенту при решении комплексной задачи по разработке нефтяного месторождения, правильно и последовательно подойти к количественной оценке некоторых основных показателей разработки нефтяного месторождения.

В рассматриваемой ниже работе требуется определить ряд основных показателей, характеризующих процесс разработки нефтяной залежи. Именно решение этой задачи формирует у студента логичность мышления, последовательность решения задач по разработке залежи.

ЗАДАНИЕ

Курсовая работа должна содержать:

- 1. Содержание
- 2. Введение
- 3. Разработку теоретического вопроса (список вопросов по вариантам)
- 4. Расчетное задание
- 5. Заключение
- 6. Список литературы
- 7. Приложение

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

(хаотично распределяет преподаватель)

- 1. Объект и система разработки. Классификация и характеристика систем разработки
- 2. Стадии разработки месторождения
- 3. Показатели разработки (добыча жидкости и нефти, нефтеотдача, давления, пластовая температура и т.д.)
- 4. Режимы нефтяных залежей и нефтеотдача пластов
- 5. Режимы газовых залежей и газоотдача пластов
- 6. Системы разработки эксплуатационных объектов (залежей)
- 7. Проектирование, анализ, контроль и регулирование разработки нефтяных месторождений
- 8. Расчеты технологических показателей разработки залежей при естественных режимах истощения (расчеты при упругом режиме, расчеты при режиме растворенного газа)
- 9. Классификация залежей и месторождений природных газов.
- 10. Основы теории поршневого и непоршневого вытеснении нефти водой
- 11. Принципы разработки нефтяных месторождений с газовой шапкой, подошвенной и краевой водой
- 12. Особенности разработки нефтяных месторождений с трещиноватыми коллекторами
- 13. Методы повышения нефтеотдачи. Цели методов воздействия на залежь. Классификация и условия применения методов нефтеотдачи

- 14. Технология и техника поддержания пластового давления заводнением
- 15. Гидродинамические методы повышения нефтеотдачи при заводнении: циклическое заводнение, изменение направлений фильтрационных потоков, создание высоких давлений нагнетания, форсированный отбор жидкости
- 16. Физико-химические методы повышения нефтеотдачи (методы с ПАВ, методы извлечения остаточной нефти из заводненных пластов)
- 17. Тепловые методы повышения нефтеотдачи (закачка в пласт теплоносителей; внутрипластовое горение)
- 18. Классификация запасов нефти
- 19. Объемный метод подсчета запасов нефти
- 20. Метод подсчета запасов нефти с помощью карт изобар
- 21. Метод материальных балансов
- 22. Методы подсчета запасов газа. Объемный метод.
- 23. Виды проектных документов, их назначение.
- 24. Рациональное размещение скважин. Резервные скважины.
- 25. Размещение нагнетательных скважин и расчеты процессов нагнетания.
- 26. Размещение скважин при разработке газоконденсатных залежей
- 27. Системы размещения эксплуатационных скважин при разработке нефтяных залежей
- 28. Гравитационная теория распределения пластовых флюидов в залежах. Границы залежи (кровля, подошва, поверхности межфлюидных контактов); внешний и внутренний контуры нефтегазоносности. Типы залежей по геологическому строению, по фазово¬му состоянию и составу УВ.
- 29. Пластовые воды залежей УВ; расположение пластовых вод относительно нефтегазоносной части залежи.
- 30. Гидродинамические расчеты при площадном заводнении.
- 31. Распределение давления в залежи до начала разработки. Приведенные пластовые давления. Карты изобар и их использование в разработке.
- 32. Особенности притока газа к забою скважины. Причины нарушения линейного закона фильтрации Дарси. Двучленное уравнение притока газа к забою.
- 33. Физические параметры пластовых нефтей: плотность,

- динамическая вязкость, газосодержание, давление насыщения нефти газом, объемный коэффициент, коэффициент сжимаемости и их зависимость от давления.
- 34. Физические параметры пластовых вод: плотность, динамическая вязкость, газосодержание, объемный коэффициент, коэффициент сжимаемости и их зависимость от давления. Минерализация пластовых вод.
- 35. Состав природных газов. Классификация природных газов. Классификация газовых залежей и месторождений
- 36. Системы размещения скважин при разработке газовых залежей в условиях различных режимов

ПРАКТИЧЕСКАЯ ЧАСТЬ

Дана нефтяная залежь, разрабатываемая на режиме вытеснения нефти водой. За начальный 10-летний период разработки залежь была разбурена основным фондом добывающих скважин и вышла на максимальный годовой уровень добычи жидкости. При этом были уточнены геолого-физические параметры нефтяного пласта и физико-химические характеристики насыщающей данный пласт нефти. По результатам фактического хода разработки в прошедший период можно судить о характере выработки запасов нефти. Требуется выполнить подсчет запасов нефти в залежи и сделать прогнозный расчет годовой добычи нефти на следующие 10 лет (с 11-го по 20-й год) используя кривую выработки извлекаемых запасов залежиналога.

Порядок выполнения работы

1 этап

- 1. Определить начальные геологические (балансовые) запасы нефти (G) в залежи, используя объемный метод подсчета.
- 2. Определить конечный коэффициент нефтеизвлечения (КНИ) расчетным путем, используя коэффициент вытеснения нефти водой (Квыт) и коэффициент охвата залежи заводнением (Кохв).
- 3. Определить начальные извлекаемые запасы нефти в залежи (НИЗ), используя рассчитанный коэффициент нефтеизвлечения.

4. Перевести рассчитанные величины геологических и извлекаемых запасов из пластовых условий в поверхностные и из объемных единиц измерения в весовые.

2 этап

- 1. Определить фактические годовые отборы жидкости (Qж) из залежи по заданным фактическим темпам отбора жидкости (Zж%HИЗ) от начальных извлекаемых запасов в период с 1 по 10 год фактической разработки.
- 2. Определить фактические годовые отборы воды (Qв) по заданном среднегодовой весовой обводненности (%Воды) добываемой жидкости в период с 1 по 10 год фактической разработки.
- 3. Определить фактические годовые отборы нефти (Qн) по рассчитанным годовым отборам жидкости и воды в период с 1 по 10 год фактической разработки.
- 4. Определить на конец каждого года фактической разработки (в период с 1 по 10 год) накопленную (или суммарную) добычу нефти (SQн).
- 5. Определить долю отобранных начальных извлекаемых запасов (%НИЗ) на конец каждого года фактической разработки (в период с 1 по 10 год).

3 этап

- В таблице 3 и на рисунке 1 представлены характеристики полной выработки извлекаемых запасов залежей A и B, которые по своим геолого-физическим параметрам, режиму работы пласта и соотношением вязкости нефти и воды ($\mu_0 = \mu_H/\mu_B$) близки нашей залежи.
- Можно предположить, что и выработка извлекаемых запасов нашей залежи будет проходить аналогично выработке запасов залежей A и B, то есть данные залежи являются залежами-аналогами.

На данном этапе требуется:

1. Сравнить соотношение долей отобранных начальных ископаемых запасов (%НИЗ) и соответствующих им обводненностей добываемой жидкости по нашей залежи и по залежам А и В.

- 2. В результате проведенного сравнения сделать выбор залежианалога, то есть выбрать соответствующую расчетную кривую на рисунке 1.
- 3. Методом последовательного приближения рассчитать годовую добычу нефти и воды на период с 11 по 20 год разработки, используя расчетную кривую выработки извлекаемых запасов.
- 4. Рассчитать годовые темпы добычи нефти от начальных извлекаемых запасов НИЗ.
- 5. Результаты расчетов представить в табличном и графическом виде.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРОВЕДЕНИЮ РАБОТЫ

В качестве примера рассмотрим задание с исходными данными варианта 0 (см. таблица 1А и 1Б)

1 этап

1. Определение начальных геологических запасов нефти G объемным методом.

Геологические запасы нефти в пластовых условиях

$$G_{n\pi} = F \times h \times m \times K \mu e \phi$$
 (M³)

где: F – площадь залежи внутри контура нефтеносности, м² h – нефтенасыщенная толщина пласта, м

m — открытая пористость пласта-коллектора, доли единиц

Кнеф — коэффициент нефтенасыщенности коллектора, показывающий какую долю порового объема пласта занимает нефть, доли единицы

$$K$$
не $\phi = 1 - S_{cens.eoo}$

где: Scвяз.вод — связанная или начальная водонасыщенность, показывающая какую долю порового объема нефтенасыщенного пласта занимает вода, оставшаяся в порах в процессе формирования нефтяной залежи. определяется по лабораторному изучению керна и геологически исследованиями скважины.

Вариант 0:
$$K \mu e \phi = 1 - 0.2 = 0.8$$

$$G_{nn} = 1200 \times 10000 \times 10 \times 0.085 \times 0.8 = 8160000$$
 _M²

2. Определение конечного нефтеизвлечения

коэффициента

КНИ:

$$KHM = K_{oxe} \times K_{eum}$$

коэффициент охвата залежи заводнением. Показывает, какая доля нефтенасыщенного объема залежи подвергается вторжению воды. Зависит в первую очередь от степени неоднородности коллектора: чем неоднородность больше, тем Кохв меньше.

Квыт – коэффициент вытеснения нефти водой. Определяется при многократной промывке керна водой в лабораторных условиях. характеризует процесс вытеснения нефти из пор коллектора.

Вариант 0:
$$KHU = 0.556 \times 0.9 = 0.5$$

Определение начальных извлекаемых запасов нефти НИЗ. Начальные извлекаемые запасы нефти в пластовых условиях:

$$HU3_{nn} = G \times KHU$$
 (м³)
Вариант 0: $HU3_{nn} = 8160000 \times 0.5 = 4080000$ (м³)

Перевод величин начальных и извлекаемых запасов из 4. пластовых условий в поверхностные и из объемных единиц в весовые.

При поднятии нефти на поверхность ее объем уменьшается вследствие выделения растворенного газа. Отношение объема нефти в пластовых условиях к объему нефти на поверхности называется объемным коэффициентом нефти:

$$BH = \frac{V_{nn}}{V_{nos}} \succ 1$$
Отсюда: $G_{nos}^{-1} = \frac{G_{nn}}{BH} = \frac{G_{nn} \times 1}{BH}$
 $HU3_{nos}^{-1} = \frac{HU3_{nn}}{BH} = \frac{HU3_{nn} \times 1}{BH}$

Величина, обратная объемному коэффициенту Вн, используется в подсчете запасов нефти и называется пересчетным коэффициентом Кпер.

Вариант 0:
$$G_{nos}^{1} = \frac{8160000}{1,5} = 5440000 \text{ (м}^{3}\text{)}$$

$$HU3_{nos}^{1} = \frac{4080000}{1,5} = 2720000 \text{ (м}^{3}\text{)}$$

В отечественной практике принято запасы нефти, добычу жидкости, нефти и воды в поверхностных условиях представлять в весовых единицах измерения – в тоннах или в тыс.тонн:

$$G_{nos} = G_{nos}^{1} \times \rho_{ne\phi.nos}$$
 $HU3_{nos} = HU3_{nos}^{1} \times \rho_{ne\phi.nos}$
Вариант 0: $G_{nos} = 5440000 \times 800 = 4352$ тыс.тонн
 $HU3_{nos} = 2720000 \times 800 = 2176$ тыс.тонн

2 этап

1. Определение фактической годовой добычи жидкости $Q_{\text{жид}}$ по заданным годовым темпам отбора от НИЗ.

Годовая добыча жидкости:

$$Q_{\mathcal{H}u\partial_n} = \frac{HVI3_{nos}}{100} \times Z\mathcal{H}_n$$

где: n — год разработки

Вариант 0:
$$Q_{\text{жид}_1} = \frac{2176}{100} \times 0,5 = 10,9$$
 тыс.т
$$Q_{\text{жид}_4} = \frac{2176}{100} \times 4,53 = 98,6$$
 тыс.т
$$Q_{\text{жид}_{10}} = \frac{2176}{100} \times 7,2 = 156,7$$
 тыс.т

2. Определение фактической годовой добычи воды $Q_{\text{вод}}$ по заданной среднегодовой обводненности добываемой жидкости Годовая добыча воды:

$$Q_{60\partial_n} = \frac{Q_{\mathcal{H}U\partial_n}}{100} \times \%Bo\partial\omega_n$$

где: n — год разработки

Вариант 0:
$$Q_{60\partial_1} = \frac{10.9}{100} \times 0.0 = 0.0$$
 тыс.т

$$Q_{60\partial_4} = \frac{98,6}{100} \times 0,5 = 0,5$$
_{Tыс.T}

$$Q_{60\partial_{10}} = \frac{156,7}{100} \times 15,3 = 24,0$$
_{TMC.T}

3. Определение фактической годовой добычи нефти $Q_{\text{неф}}$. Годовая добыча нефти:

$$Q_{{\scriptscriptstyle He}\phi_n} = Q_{{\scriptscriptstyle \mathcal{H}U}\partial_n} - Q_{{\scriptscriptstyle \mathcal{B}O}\partial_n}$$

где: n — года разработки.

Вариант 0:
$$Q_{не\phi_1} = 10,9 - 0 = 10,9$$
 тыс.т

.....

$$Q_{{}_{{}^{\textit{He}}\phi_4}} = 98,6-0,5 = 98,1_{\,{}^{\textit{TMC.T}}}$$

$$Q_{{}_{He\phi_{10}}} = 156,7-24,0 = 132,7_{\mathrm{TMC.T}}$$

4. Определение фактической накопленной добычи нефти $\Sigma Q_{\text{неф}}$ на конец каждого года разработки

Накопленная добыча нефти:

$$\Sigma Q_{\text{ He}\phi_{-1}} = Q_{\text{ He}\phi_{-1}}$$

$$\Sigma Q_{\text{ne}\phi_n} = \Sigma Q_{\text{ne}\phi_{n-1}} + Q_{\text{ne}\phi_n}$$

где: n — год разработки

Вариант 0: $\Sigma Q_{\text{не}\phi_{-1}} = Q_{\text{не}\phi_{-1}} = 10$, 9 тыс.т

.....

$$\Sigma Q_{\text{неф}_4} = \Sigma Q_{\text{неф}_3} + Q_{\text{неф}_4} = 119$$
 ,7 + 98 ,1 = 217 ,8 ТЫС.Т

$$\Sigma Q_{ne\phi_{10}} = \Sigma Q_{ne\phi_{9}} + Q_{ne\phi_{10}} = 926$$
 ,9 + 132 ,7 = 1059 ,6 ТЫС.Т

5. Определение фактических долей отобранных начальных извлекаемых запасов % НИЗ на конец каждого года разработки

$$\%HU3_{n} = \frac{\Sigma Q_{He\phi_{n}}}{HU3_{noe}} \times 100 \quad (\%)$$

где: n — год разработки

Вариант 0:
$$\%HU3_{\perp} = \frac{10.9}{2176} \times 100 = 0.5 \%$$

.....

$$\%HU3_{4} = \frac{217.8}{2176} \times 100 = 10.0_{\%}$$

.....

$$\%HU3_{10} = \frac{1059.6}{2176} \times 100 = 48.7 \%$$

6. Определение фактических годовых темпов отбора нефти от начальных извлекаемых запасов (Zн%HИЗ) на конец каждого года разработки

$$Z_{H}\%HU3_{_{n}} = \frac{Q_{He\phi_{n}}}{HU3_{nos}} \times 100_{(\%)}$$

где: п – год разработки

Вариант 0:
$$ZH\%HU3_1 = \frac{10.9}{2176} \times 100 = 0.5\%$$

......

$$ZH\%HU3_{_4} = \frac{98,1}{2176} \times 100 = 4,51 \%$$

.....

$$ZH\%HU3_{10} = \frac{132,7}{2176} \times 100 = 6,1_{\%}$$

Таблица 4 Сводная таблица результатов расчета на 1 и 2 этапе (вариант 0)

год	НИ3	$Z_{\scriptscriptstyle \mathbb{K}}$	$Q_{\scriptscriptstyle m WИД}$	$Q_{ ext{вод}}$	$Q_{{ t He} \phi}$	$\Sigma Q_{{ ext{He}} \phi}$	%НИЗ	%Воды	$Z_{\scriptscriptstyle \mathrm{H}}$
	тыс.т	%	тыс.т	тыс.т	тыс.т	тыс.т	%	%	%
1	2176	0,5	10,9	0	10,9	10,9	0,5	0	0,5
2	2176	1,8	39,2	0	39,2	50,1	2,3	0	1,8
3	2176	3,2	69,6	0	69,6	119,7	2,5	0	3,2
4	2176	4,53	98,6	0,5	98,1	217,8	10,0	0,5	4,51
5	2176	5,95	129,5	1,1	128,3	346,1	15,9	0,87	5,9
6	2176	6,76	147,1	2,5	144,6	490,7	22,5	1,7	6,64
7	2176	7,0	152,3	5,0	147,3	638,0	29,3	3,3	6,77

8	2176	7,2	156,7	9,4	147,3	785,3	36,1	6,0	6,77
9	2176	7,2	156,7	15,0	141,6	926,9	42,6	9,6	6,51
10	2176	7.2	156,7	24,0	132.7	1059,6	48,7	15.3	6.1

3 этап

На данном этапе требуется сделать прогноз добычи нефти из залежи на следующие 10 лет разработки.

После полного разбуривания залежи основным фондом скважин дальнейшая динамика добычи нефти в первую очередь зависит от характера обводнения залежи, определение которого часто является основной проблемой при прогнозировании добычи нефти.

Одним из методов прогноза добычи нефти, который мы и будем применять в данной работе, является использование фактических результатов разработки залежей-аналогов, извлекаемые запасы которых полностью или почти полностью выработаны.

Аналогами друг друга по характеру выработки запасов могут являться залежи с однотипным геологическим строением, одинаковыми режимами работы пласта, типом коллектора и его степенью неоднородности, соотношениями фазовых проницаемостей, отношением вязкостей нефти и воды, а также одинаковым термодинамическими характеристиками залежи.

В нашей работе всем эти перечисленным выше условиям соответствуют залежи А и В. Необходимо для дальнейших прогнозных расчетов из данных двух залежей выбрать залежь – аналог, основываясь при этом на сравнении фактических показателях выработки извлекаемых запасов залежи и залежей А и В.

В первую очередь нас будут интересовать соотношения доли отобранных извлекаемых запасов % НИЗ и соответствующей ей текущей обводненности продукции % Воды.

Вариант 0:

- 1) Фактические показатели выработки извлекаемых запасов нашей залежи с 1 по 10 год представлены в таблице 4. Фактические показатели выработки извлекаемых запасов залежей A и B за весь срок разработки представлены на рис.1, а также в таблице 3.
- 2) При проведении сравнения видно, что аналогом нашей залежи может являться залежь A, так как при равных долях отбора от извлекаемых запасов % НИЗ величины обводненности % Воды совпадают.
- 3) Следовательно, мы можем использовать кривую «А» на рисунке 1 для экстраполяции (продолжения) хода разработки нашей

залежи на прогнозный период с 11 по 20 год.

Методика проведения расчета

Определять годовую добычу нефти будем расчетнографическим способом методом последовательного приближения по кривой выработки начальных извлекаемых запасов.

Результаты расчетов будем заносить в таблицу 5.

Расчеты будем проводить исходя из условия сохранения в течение прогнозного периода достигнутых максимальных годовых отборов жидкости: $Q_{\text{жид}11} = Q_{\text{жид}12} = \dots = Q_{\text{жид}20} = Q_{\text{max.жид}}$

Для всех вариантов максимальный темп отбора жидкости от начальных извлекаемых запасов (Zmax.жид%HИЗ) = 7,2%, отсюда

$$Q_{_{\mathcal{H}U\partial_{\max}}} = \frac{H \mathcal{U} 3_{_{nos}}}{100} \times 7,2$$
 Для варианта 0: $Q_{_{\mathcal{H}U\partial_{\max}}} = \frac{2176}{100} \times 7,2 = 156,7$ тыс.т

$$Q_{\text{жид11}} = Q_{\text{жид12}} = \dots = Q_{\text{жид20}} = Q_{\text{max.жид}} = 156,7 \text{ тыс.т}$$

1. Для определения прогнозной годовой добычи нефти в 11-ом году разработки будем идти следующими шагами приближения.

1 шаг

а) примем условно, что в 11-ом году добыча нефти по сравнению с 10-ым годом не изменится, то есть $Q^1_{\textit{неф11}} = Q_{\textit{неф10}}$ и $Q^1_{\textit{вод11}} = Q_{\textit{вод10}}$

Для варианта 0:
$$Q_{нe\phi11}^1 = Q_{ne\phi10} = 132,7$$
 тыс.т

b) определим, какая при этом будет накопленная добыча нефти на конец 11-го года:

$$\sum Q^{1}_{ne\phi 11} = \sum Q_{ne\phi 10} + Q^{1}_{ne\phi 11}$$

Для варианта 0: $\Sigma Q^{1}_{ne\phi 11} = 1059$,6 + 132 ,7 = 1192 ,3 тыс.т

с) определим долю отобранных НИЗ:

% НИЗ
$$^{1}_{11} = \frac{\Sigma Q^{1}_{\text{не}\phi11}}{HИЗ_{\text{nos}}} \times 100$$

Для варианта 0:
$$\%HU3^{1}_{11} = \frac{1192,3}{2176} \times 100 = 54,8 \%$$

При этом, согласно кривой «А» (см.рис.3), среднегодовая обводненность должна составить %Воды $^{1}_{11} = 25,7\%$.

2 шаг

а) примем условно, что в 11-ом году среднегодовая обводненность равна %Воды $^{1}_{11} = 25,7\%$ (из 1-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^{2}_{60\partial 11} = \frac{Q_{360\partial 11}}{100} \times \%Bod\omega^{1}_{11}$$

Для варианта 0:

$$Q^2_{60011} = \frac{156,7}{100} \times 25,7 = 40,3_{\text{TMC.T}}$$

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{He}\phi11}^2 = Q_{\text{MCU}\partial11} - Q_{\text{BO}\partial11}^2$$

Для варианта 0:
$$Q_{нe\phi11}^2 = 156,7 - 40,3 = 116,4$$
 тыс.т

с) определим, какая при это будет накопленная добыча нефти

$$\sum Q^{2}_{ne\phi \ 11} = \sum Q_{ne\phi \ 10} + Q^{2}_{ne\phi \ 11}$$

Для варианта 0: $\Sigma Q^{2}_{ne\phi 11} = 1059$,6 + 116 ,4 = 1176 ,0 тыс.т

d)определим долю отобранных НИЗ:

% НИЗ
$$^{2}_{11} = \frac{\Sigma Q^{2}_{He\phi11}}{HИЗ_{nos}} \times 100$$

Для варианта 0:
$$\%HU3^2_{11} = \frac{1176}{2176} \times 100 = 54,0 \%$$

При этом, согласно кривой «А» (см. рис. 3), среднегодовая обводненность должна составить % Воды $^2_{11} = 24,0\%$.

3 шаг

а) примем условно, что в 11-ом году среднегодовая обводненность равна % Воды $^2_{11} = 24,0\%$ (из 2-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^{3}_{60\partial 11} = \frac{Q_{360\partial 11}}{100} \times \%Bodы^{2}_{11}$$

Для варианта 0:

$$Q^{3}_{60\partial 11} = \frac{156,7}{100} \times 24,0 = 37,6_{\text{TbIC.T}}$$

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{he}\phi11}^3 = Q_{\text{me}\phi11} - Q_{\text{bo}d11}^3$$

Для варианта 0: $Q_{\mu e \phi 11}^3 = 156,7 - 37,6 = 119,1_{\text{ТЫС.Т}}$

с) определим, какая при это будет накопленная добыча нефти

$$\Sigma \, Q^{3}_{$$
 ne ϕ 11 = $\Sigma \, Q_{}_{$ ne ϕ 10 + $Q^{3}_{}$ ne ϕ 11

Для варианта 0: $\Sigma Q^{3}_{ne\phi 11} = 1059$, 6 + 119, 1 = 1178, 6 тыс.т

d) определим долю отобранных НИЗ:

% НИЗ
$$_{11}^{3} = \frac{\sum Q^{3}_{He\phi 11}}{HИ3_{nos}} \times 100$$

Для варианта 0:
$$\%HU3^3_{11} = \frac{1178,6}{2176} \times 100 = 54,2 \%$$

При этом, согласно кривой «А» (см.рис.3), среднегодовая обводненность должна составить %Воды $^{3}_{11} = 24,4\%$.

4 шаг

а) примем условно, что в 11-ом году среднегодовая обводненность равна ${}^{\circ}$ Воды ${}^{3}_{11} = 24,4\%$ (из 3-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^4_{60\partial 11} = \frac{Q_{360\partial 11}}{100} \times \%Bo\partial \omega^3_{11}$$

Для варианта 0:

$$Q^4_{60011} = \frac{156,7}{100} \times 24,4 = 38,2_{\text{TMC.T}}$$

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{he}\phi11}^4 = Q_{\text{жид11}} - Q_{\text{вод11}}^4$$

Для варианта 0:
$$Q_{ne\phi11}^4 = 156,7 - 38,2 = 118,5$$
 тыс.т

с) определим, какая при это будет накопленная добыча нефти

$$\Sigma \, Q^{4}_{}{}_{\scriptscriptstyle{He}\phi}$$
 11 = $\Sigma \, Q_{}_{}{}_{\scriptscriptstyle{He}\phi}$ 10 + $Q^{4}_{}{}_{\scriptscriptstyle{He}\phi}$ 11

Для варианта 0: $\Sigma Q^{4}_{ne\phi \ 11} = 1059$,6 + 118 ,5 = 1178 ,1 тыс.т

d) определим долю отобранных НИЗ:

% НИЗ
$$^{4}_{11} = \frac{\Sigma Q^{4}_{\text{неф11}}}{HИЗ_{\text{nos}}} \times 100$$

Для варианта
$$0$$
: % $HU3^{4}_{11} = \frac{1178,1}{2176} \times 100 = 54,1 \%$

При этом, согласно кривой «А» (см. рис. 3), среднегодовая обводненность должна составить %Воды $^{3}_{11} = 24,3\%$.

5 шаг

а) примем условно, что в 11-ом году среднегодовая обводненность равна % Воды $^4_{11} = 24,3\%$ (из 4-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^{5}_{60\partial 11} = \frac{Q_{360\partial 11}}{100} \times \%Bo\partial \omega^{4}_{11}$$

Для варианта 0:

$$Q^{5}_{60011} = \frac{156,7}{100} \times 24,3 = 38,1_{\text{TMC.T}}$$

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{he}\phi11}^5 = Q_{\text{scud}11} - Q_{\text{bod}11}^5$$

Для варианта 0:
$$Q_{he\phi11}^5 = 156,7 - 38,1 = 118,6_{TMC.T}$$

с) определим, какая при это будет накопленная добыча нефти

$$\Sigma Q^{5}_{ne\phi \ 11} = \Sigma Q_{ne\phi \ 10} + Q^{5}_{ne\phi \ 11}$$

Для варианта 0: $\Sigma Q^{5}_{ne\phi 11} = 1059$,6 + 118 ,6 = 1178 ,2 тыс.т

d) определим долю отобранных НИЗ:

$$\% H V 3^{5}_{11} = \frac{\Sigma Q^{5}_{\mu e \phi 11}}{H V 3_{nos}} \times 100$$

Для варианта 0:
$$\%HU3^{5}_{11} = \frac{1178,2}{2176} \times 100 = 54,1\%$$

При этом, согласно кривой «А» (см.рис.3), среднегодовая обводненность должна составить % Воды $^{5}_{11} = 24,3\%$, что совпадает с условием (а) на 5 шаге.

Таким образом, мы методом последовательного приближения установили, что расчетные показатели разработки в 11-ом прогнозном году составили:

$$Q_{\text{жид11}} = 156,7 \text{ тыс.т}$$

 $Q_{\text{вод11}} = 38,1 \text{ тыс.т}$
 $Q_{\text{неф11}} = 118,6 \text{ тыс.т}$
% Воды₁₁ = 24,3%
% НИЗ₁₁ = 54,1%

2. Для определения прогнозной годовой добычи нефти в 12-ом году разработки будем идти следующими шагами приближения.

1 шаг

а) примем условно, что в 12-ом году добыча нефти по сравнению с 11-ым годом не изменится, то есть $Q^1_{\textit{не}\phi12} = Q_{\textit{не}\phi11}$ и $Q^1_{\textit{во}\partial12} = Q_{\textit{во}\partial11}$

Для варианта 0:
$$Q_{he\phi12}^1 = Q_{he\phi11} = 118,6$$
 тыс.т

b) определим, какая при это будет накопленная добыча нефти на конец 11-го года:

$$\sum Q^{1}_{ne\phi 12} = \sum Q_{ne\phi 11} + Q^{1}_{ne\phi 12}$$

Для варианта 0: $\Sigma Q^{1}_{ne\phi 12} = 1178$, 2 + 118, 6 = 1296, 8 тыс.т

с) определим долю отобранных НИЗ:

% НИЗ
$$^{1}_{12} = \frac{\Sigma Q^{1}_{He\phi 12}}{H U 3_{nog}} \times 100$$

Для варианта 0:
$$\%HU3^{1}_{12} = \frac{1296,8}{2176} \times 100 = 59,6 \%$$

При этом, согласно кривой «А» (см. рис. 3), среднегодовая обводненность должна составить % Воды $^{1}_{12}$ = 35,0%.

2 шаг

а) примем условно, что в 12-ом году среднегодовая обводненность равна % Воды $^{1}_{12}$ = 35,0% (из 1-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^{2}_{60\partial 12} = \frac{Q_{360\partial 12}}{100} \times \%Bo\partial bi^{1}_{12}$$

Для варианта 0:

$$Q^2_{60011} = \frac{156,7}{100} \times 35,0 = 54,8_{\text{TMC.T}}$$

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{He}\phi 12}^2 = Q_{\text{жид } 12} - Q_{\text{вод } 12}^2$$

Для варианта 0:
$$Q_{нe\phi12}^2 = 156,7 - 54,8 = 101,9$$
 тыс.т

с) определим, какая при это будет накопленная добыча нефти

$$\sum Q^{\frac{1}{2}}_{ne\phi \ 12} = \sum Q_{ne\phi \ 11} + Q^{\frac{1}{2}}_{ne\phi \ 12}$$

Для варианта 0: $\Sigma Q^{2}_{\mu\nu\phi} = 1178$,2 + 101 ,9 = 1280 ,1 тыс.т

d)определим долю отобранных НИЗ:

% НИЗ
$$^{2}_{12} = \frac{\Sigma Q^{2}_{\mu e \phi 12}}{H U 3_{nos}} \times 100$$

Для варианта 0:
$$\%HU3^2_{12} = \frac{1280,1}{2176} \times 100 = 58,8 \%$$

При этом, согласно кривой «А» (см.рис.3), среднегодовая обводненность должна составить %Воды $^{2}_{12} = 33,2\%$.

3 шаг

а) примем условно, что в 11-ом году среднегодовая обводненность равна %Воды $^2_{12}$ = 33,2% (из 2-го шага).

Тогда можем определить годовую добычу воды по известной годовой добыче жидкости:

$$Q^{3}_{60\partial 12} = \frac{Q_{360\partial 12}}{100} \times \% Bodы^{2}_{12}$$

Для варианта 0:

$$Q^{3}_{60\partial 12} = \frac{156,7}{100} \times 33,2 = 52,0$$
_{Tыс.T}

b) определяем соответствующую годовую добычу нефти

$$Q_{\text{he}\phi12}^3 = Q_{\text{жид}12} - Q_{\text{вод}12}^3$$

Для варианта 0:
$$Q_{нe\phi 12}^3 = 156,7 - 52,0 = 104,7$$
 тыс.т

с) определим, какая при это будет накопленная добыча нефти

$$\Sigma Q^3_{\text{ne}\phi 12} = \Sigma Q_{\text{ne}\phi 11} + Q^3_{\text{ne}\phi 12}$$

Для варианта 0: $\Sigma Q^{3}_{ne\phi 12} = 1178$,2 + 104 ,7 = 1282 ,9 тыс.т

d)определим долю отобранных НИЗ:

% НИЗ
$$_{12}^{3} = \frac{\Sigma Q^{3}_{\text{неф12}}}{HИЗ_{nos}} \times 100$$

Для варианта 0:
$$\%HU3_{12}^3 = \frac{1282.9}{2176} \times 100 = 59.0 \%$$

При этом, согласно кривой «А» (см.рис.3), среднегодовая обводненность должна составить %Воды $^{3}_{12} = 33,5\%$.

И так далее аналогично пройденным шагам для расчета 11-го года (пункт 3) до тех пор, пока расчетные значения %Воды и %НИЗ не будут соответствовать координатам точки на расчетном графике.

В работе привести подробные расчеты только для 11-го и 12-годов разработки, сведя их в таблицу 5. Для последующих лет привести только конечные результаты расчетов по годам разработки (таблица 6).

Таблица 5 Пошаговый расчет добычи нефти для 11 и 12 годов разработки

								По кри		
	Годы	НИ3	<i>Z</i> _ж %НИЗ	$Q_{ m жид}$	$Q_{ ext{вод}}$	$Q_{{\scriptscriptstyle { m He}} {\scriptscriptstyle {}} {\scriptscriptstyle {}} {\scriptscriptstyle {}} {\scriptscriptstyle {}} {\scriptscriptstyle {}}}$	$\Sigma Q_{\scriptscriptstyle{ m He} \varphi}$	% НИЗ	% Воды	% Воды
		тыс.т	%	тыс.т	тыс.т	тыс.т	тыс.т	%	%	*
факт	10	2176	7,2	156,7	24,0	132,7	1059,6	48,7	15,3	
Doorrow	1шаг	2176	7,2	156,7		132,7	1192,3	54,8	25,7	
Расчет	2шаг	2176	7,2	156,7	40,3	116,4	1176,0	54,0	24,0	25,7
добычи в 11	3шаг	2176	7,2	156,7	37,6	119,1	1178,6	54,2	24,4	24,0
	4шаг	2176	7,2	156,7	38,2	118,5	1178,1	54,1	24,3	24,4
году	11	2176	7,2	156,7	38,1	118,6	1178,2	54,1	24,3	24,3
Doorrow	1шаг	2176	7,2	156,7		118,6	1296,8	59,6	35,0	
Расчет	2шаг	2176	7,2	156,7	54,8	101,9	1280,1	58,8	33,2	35,0
добычи в 12	3шаг	2176	7,2	156,7	52,0	104,7	1282,9	59,0	33,5	33,2
	4шаг	2176	7,2	156,7	52,5	104,2	1282,4	58,9	33,4	33,5
году	12	2176	7,2	156,7	52,3	104,3	1282,5	58,9	33,4	33,4

Таблица 6 Результаты расчетов прогнозных показателей разработки на период с 11 по 20 год

				I 1			,		
							По криг	вой А	
Годы	НИ3	<i>Z</i> ж%НИ3	$Q_{\scriptscriptstyle m жид}$	$Q_{ m BOJ}$	$Q_{ m неф}$	$\Sigma Q_{{ ext{He}} {f \varphi}}$	% НИЗ	% Воды	Z _н %НИЗ
	тыс.т	%	тыс.т	тыс.т	тыс.т	тыс.т	%	%	
10	2176	7,2	156,7	24,0	132,7	1059,6	48,7	15,3	6,1
11	2176	7,2	156,7	38,1	118,6	1178,2	54,1	24,3	5,45
12	2176	7,2	156,7	52,3	104,3	1282,5	58,9	33,4	4,8
			4						
			6.1						
		4		7					
19	2176	7,2	156,7	123,6	33,1	1664,5	76,5	78,9	1,52
20	2176	7,2	156,7	127,4	29,3	1693,8	77,8	81,3	1,35

Таблица 1А

Исходные данные для групп НР-41,

	F	1.		ые данны				IC
№вар.		h	m	S _{связ.вод}	Внеф	ρ _{неф. пов} кг/м ³	K _{Bыт}	K_{oxb}
	га	M	доли ед	доли ед	1.7		доли ед	доли ед
0	1200	10	0,085	0,2	1,5	800	0,556	0,9
1A	1200	10	0,11	0,13	1,412	800	0,48	0,9
2A	1400	10	0,109	0,15	1,414	800	0,52	0,88
3A	1600	10	0,108	0,17	1,416	800	0,56	0,86
4A	1800	10	0,107	0,19	1,418	800	0,6	0,84
5A	2000	10	0,106	0,21	1,42	800	0,64	0,82
6A	1200	12	0,105	0,14	1,422	802	0,48	0,82
7A	1400	12	0,104	0,16	1,424	802	0,52	0,84
8A	1600	12	0,103	0,18	1,426	802	0,56	0,86
9A	1800	12	0,102	0,2	1,428	802	0,6	0,88
10A	2000	12	0,101	0,22	1,43	802	0,64	0,9
11A	1200	14	0,1	0,13	1,432	804	0,48	0,9
12A	1400	14	0,099	0,15	1,434	804	0,52	0,88
13A	1600	14	0,098	0,17	1,436	804	0,56	0,86
14A	1800	14	0,097	0,19	1,438	804	0,6	0,84
15A	2000	14	0,096	0,21	1,44	804	0,64	0,82
16A	1200	16	0,095	0,14	1,442	806	0,48	0,82
17A	1400	16	0,094	0,16	1,444	806	0,52	0,84
18A	1600	16	0,093	0,18	1,446	806	0,56	0,86
19A	1800	16	0,092	0,2	1,448	806	0,6	0,88
20A	2000	16	0,091	0,22	1,45	806	0,64	0,9
21A	1200	18	0,09	0,13	1,452	808	0,48	0,9
22A	1400	18	0,089	0,15	1,454	808	0,52	0,88
23A	1600	18	0,088	0,17	1,456	808	0,56	0,86
24A	1800	18	0,087	0,19	1,458	808	0,6	0,84
25A	2000	18	0,086	0,21	1,46	808	0,64	0,82
26A	1400	28	0,064	0,16	1,504	818	0,52	0,84
27A	1200	24	0,075	0,14	1,482	814	0,48	0,82
29A	1400	24	0,074	0,16	1,484	814	0,52	0,84
30A	1600	24	0,073	0,18	1,486	814	0,56	0,86
31A	1800	24	0,072	0,2	1,488	814	0,6	0,88
32A	2000	24	0,071	0,22	1,49	814	0,64	0,9
33A	1200	26	0,07	0,13	1,492	816	0,48	0,9
34A	1400	26	0,069	0,15	1,494	816	0,52	0,88
35A	1600	26	0,068	0,17	1,496	816	0,56	0,86
36A	1800	26	0,067	0,19	1,498	816	0,6	0,84

Таблица 1Б

	Исходные данные для групп ЗНР-51								
№вар.	F	h	m	$S_{ m cвяз.вод}$	$B_{{ ext{He}} {\phi}}$	р _{неф. пов}	$K_{\scriptscriptstyle m BMT}$	$K_{ ext{oxb}}$	
лұвар.	га	M	доли ед	доли ед		$\kappa\Gamma/M^3$	доли ед	доли ед	
0	1200	10	0,085	0,2	1,5	800	0,556	0,9	
1Б	1200	20	0,085	0,14	1,462	810	0,48	0,82	
2Б	1400	20	0,084	0,16	1,464	810	0,52	0,84	
3Б	1600	20	0,083	0,18	1,466	810	0,56	0,86	
4Б	1800	20	0,082	0,2	1,468	810	0,6	0,88	
5Б	2000	20	0,081	0,22	1,470	810	0,64	0,9	
6Б	1200	22	0,08	0,13	1,472	812	0,48	0,9	
7Б	1400	22	0,079	0,15	1,474	812	0,52	0,88	
8Б	1600	22	0,078	0,17	1,476	812	0,56	0,86	
9Б	1800	22	0,077	0,19	1,478	812	0,6	0,84	
10Б	2000	22	0,062	0,12	1,452	815	0,64	0,82	
11Б	1200	24	0,075	0,14	1,437	815	0,48	0,82	
12Б	1400	24	0,074	0,16	1,468	815	0,52	0,84	
13Б	1600	24	0,073	0,18	1,476	815	0,56	0,86	
14Б	1800	24	0,072	0,2	1,401	815	0,6	0,88	
15Б	2000	24	0,071	0,22	1,405	815	0,64	0,9	
16Б	1200	26	0,07	0,13	1,497	813	0,48	0,9	
17Б	1400	26	0,069	0,15	1,485	813	0,52	0,88	
18Б	1600	26	0,068	0,17	1,403	813	0,56	0,86	
19Б	1800	26	0,067	0,19	1,406	813	0,6	0,84	
20Б	2000	26	0,066	0,21	1,452	813	0,64	0,82	
21Б	1200	28	0,065	0,14	1,482	820	0,48	0,82	
22Б	1400	28	0,064	0,16	1,404	820	0,52	0,84	
23Б	1600	28	0,063	0,18	1,506	820	0,56	0,86	
24Б	1800	28	0,062	0,2	1,508	818	0,6	0,88	
25Б	2000	28	0,061	0,22	1,51	818	0,64	0,9	
26 Б	2200	30	0,064	0,13	1,52	824	0,66	0,8	
27Б	2200	30	0,065	0,18	1,526	824	0,56	0,9	
28Б	2200	30	0,066	0,16	1,524	824	0,58	0,84	
29Б	2200	30	0,068	0,2	1,518	824	0,6	0,88	
30Б	2200	30	0,07	0,22	1,506	824	0,62	0,9	
31Б	2400	32	0,072	0,26	1,486	822	0,64	0,9	
32Б	1200	6	0,045	0,18	1,402	808	0,8	0,82	
33Б	1400	8	0,074	0,16	1,564	810	0,52	0,84	
34Б	1600	18	0,053	0,14	1,466	810	0,66	0,96	
35Б	1800	26	0,092	0,32	1,468	810	0,6	0,88	
36Б	2000	20	0,071	0,12	1,470	810	0,64	0,9	

Таблица2

Фактические показатели разработки залежи Годовые темпы отбора Среднегодовая обводненность жидкости от начальных добываемой жидкости извлекаемых запасов Годы *Z*_ж% НИЗ %Воды разработки в % в % для всех вариантов для нечетных для четных 1 0,5 0 0 2 0 0 1,8 3,2 0 0 3 4 4,53 0,5 0 5 5,95 0,9 0 6,76 6 1,7 0 3,3 7 7,0 0 8 2,8 7,2 6,0 9 7,2 9,6 4,2 10 7,2 7,6 15,3

Таблица 3 Характер выработки запасов нефти месторождений – аналогов

Отбор нефти от начальных	Среднегодовая весовая обводненность				
извлекаемых запасов	добываемой жидкости				
% НИЗ	% Воды				
в %	в %				
	кривая А	кривая В			
0	0	0			
5	0	0			
10	0,5	0			
15	0,8	0			
20	1,3	0			
25	2,2	0			
30	3,5	0			
35	5,5	2,5			
40	8,0	3,5			
45	11,5	4,7			
50	17,0	7,4			
55	26,0	11,0			
60	36,0	17,0			
65	51,0	27,0			
70	65,0	45,0			
75	76,0	63,0			
80	85,0	77,0			
85	92,0	88,0			
90	96,5	94,0			
95	99,0	98,0			

ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Машиностроительный факультет Кафедра «Нефтегазоразработка и гидропневмоавтоматика»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К курсовой работе

По дисциплине: «Разработка нефтяных и газовых месторождений»

на тему «СИСТЕМЫ РАЗРАБОТКИ ЭКСПЛУАТАЦИОННЫХ ОБЪЕКТОВ (ЗАЛЕЖЕЙ)»

Выполнил:	студент гр. ЗНР-51 Иванов И.И.
Руководитель:	ст. преподаватель Шепелева И.С.
Дата защиты:	
Оценка работы:	
Подписи членов комиссии по защите курсовой работы:	

Гомель 2023

ПРИЛОЖЕНИЕ 2

Учреждение образования «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени П.О.Сухого»

Заочный факультет

«	УТВЕРЖДА	ХЮ»						
Зав.кафо «21» апр	едрой (по реля 2023г.	одпись)						
			ЗАДА	АНИЕ				
			по курсов	вой работе				
	Студент	гу <u>Иван</u>	нову Ивану Ив	<u>ановичу</u>				_
I. T	ема проект			и прогнозны курсовой работь	-			<u>'KUX</u>
-	ооки сдачи сл Исходные дан	· . (о проекта <u> 30.0</u> -	4.2024z			<u>_</u>
№вар.	F га	<i>h</i> м	<i>т</i> доли ед	S _{связ.вод} доли ед	$oldsymbol{B}_{ ext{ne}oldsymbol{\phi}}$	р _{неф.} пов	<i>К</i> _{выт} доли ед	К _{охв} доли ед
27A	2400	20	0,106	0,23	1,48	810	0,58	0,92
вопросо	ов)			записки (переч				тке

объектов (залежей) (это ваш вариант теотетической части и расчета У

номеру в журнале)

Каждого свой вариант, он берется из списка согласно порядковому

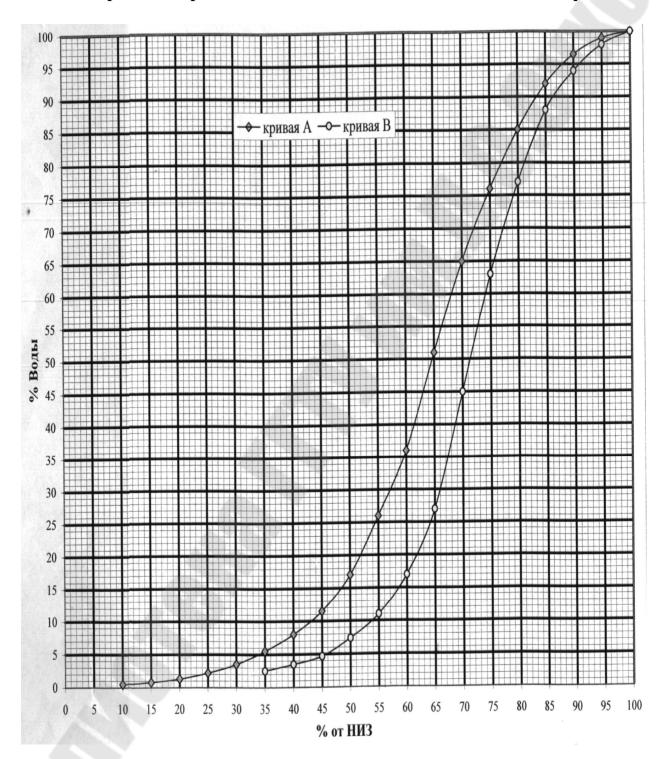
2. Определение запасов, коэффициента нефтеизвлечения, перевод, величин начальных и
извлекаемых запасов из пластовых условий в поверхностные и из объемных единиц в
весовые. (здесь отражены все 4 пункта 1 Этапа Общее для всех)
3. Определение фактических годовых отборов жидкости (Ож) из залежи по заданным
фактическим темпам отбора жидкости (Zж%НИЗ) от начальных извлекаемых
запасов, фактических годовых отборов воды (Ов) по заданной среднегодовой весовой
обводненности (%Воды) добываемой жидкости, фактических годовых отборов
нефти (Он) по рассчитанным годовым отборам жидкости и воды, накопленной (или
суммарной) добычи нефти, доли отобранных начальных извлекаемых запасов (%НИЗ)
на конец каждого года фактической разработки (в период с 1 по 10
<u>год)</u>
4. Методом последовательного приближения рассчитать годовую добычу нефти и
воды на период с 11 по 20 год разработки, годовые темпы добычи нефти от
начальных извлекаемых запасов НИЗ, используя расчетную кривую выработки
<u>извлекаемых запасов.(3 Этап Общее для всех)</u>
5. Перечень графического материала (с точным указанием обязательных чертежей и
графиков) <u>кривые выработки начальных извлекаемых запасов нефти</u>
6. Консультанты по проекту (с указанием разделов проекта) <u>Шепелева И.С.</u>
7. Дата выдачи задания <u>21.12.2023г</u>
8. Календарный график над курсовой работой на весь период (с указанием сроков
выполнения и трудоемкости отдельных этапов):
1 этап - 21.12.2023г – 22.01.2024г
3 этап — 25.02.2024г -26.03.2024г
<u> 23.02.2024г 20.03.2024г</u> 4 этап – 27.03.2024г – 22.04.2024г
С 23.04.2024г по 30.04.2024г оформление курсовой работы соответствено требованиям.
(Курсовая должна быть оформлена так: 1лист –титульник; 2лист – задание;
<u>3 лист - содержание; 4 - лист далее введение; 1.(название вашего варианта</u>
теоретич. части) 2. раздел, 3 раздел 4 раздел см. по примеру. Далее Обязательно
заключение и список литературы)
Руководитель
(подпись)
Задание принял к исполнению
(дата и подпись студента)

эленения: все, что **жирным** бланк заносить **не нужно**; Пояснения: все, что жирным курсивом это объяснения для студента, и в все, что **НЕ жирным курсивом** это пояснение к расчету курсовой которое просто переписывается студентом без изменений.

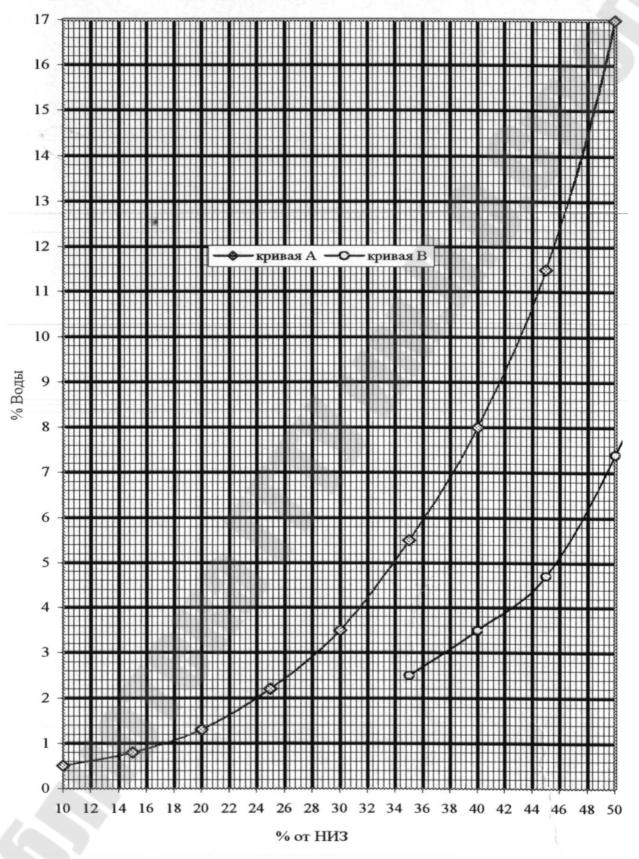
Изменены должны быть только вариант (выбранный из таблицы с вариантами в конце методички согласно группе HP или 3HP) и даты получения, выполнения и сдачи курсовой.

Введение, заключение и первый раздел (согласно теме выданной преподавателем), можно выбирать из пособия, которое выдал преподаватель «Теоретическая часть для курсовых работ».

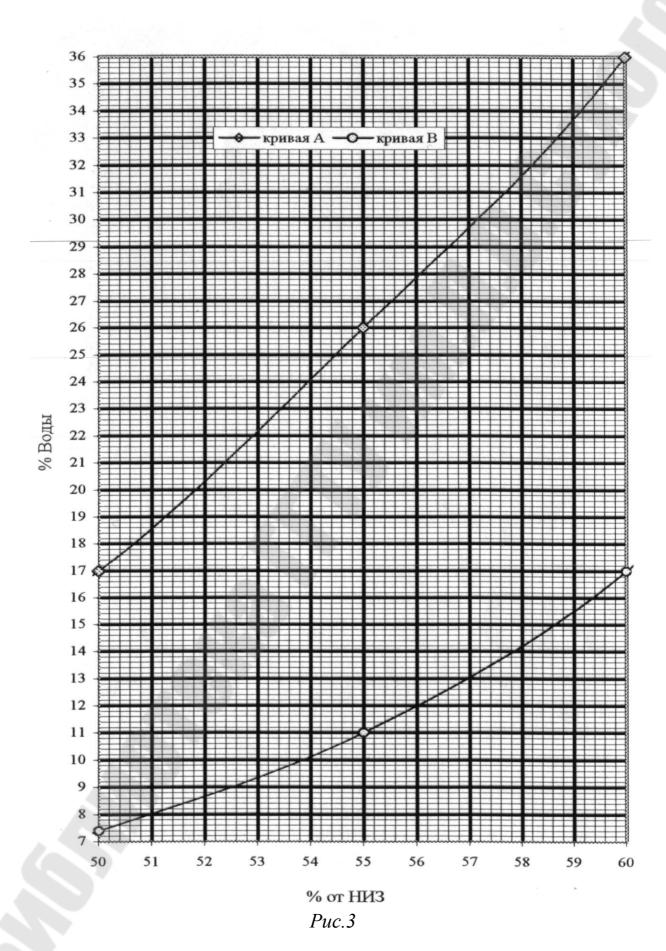
Внимание! Введение и Заключение должны отражать теоретический вопрос (который выдал преподаватель). И касаться именно темы студента.

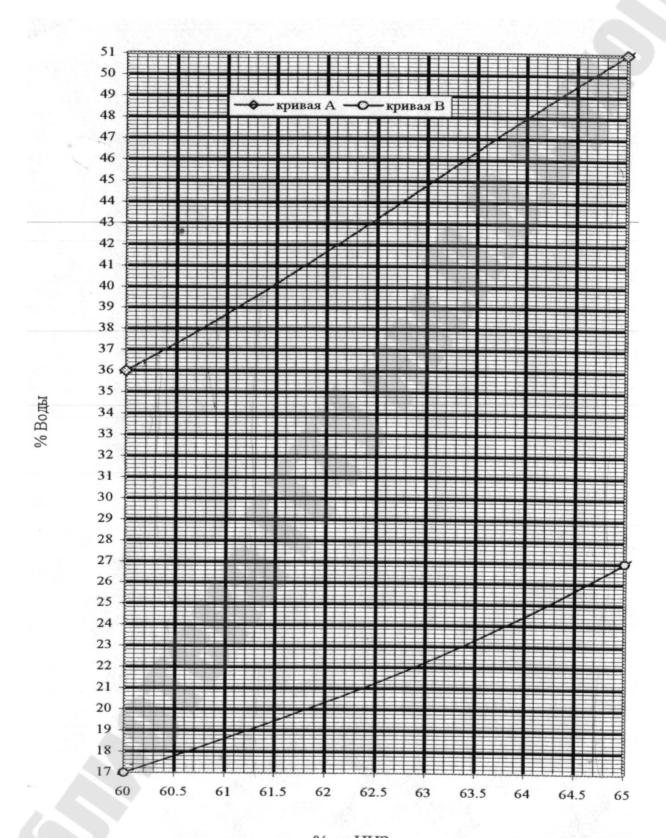

Из методички введение и заключение не переписывать!

Введение необходимо начать с темы курсовой работы, указать цель курсовой работы, обозначить задачи для достижения цели, кратко пояснить суть теоретической части и обосновать необходимость расчета для раскрытия темы.

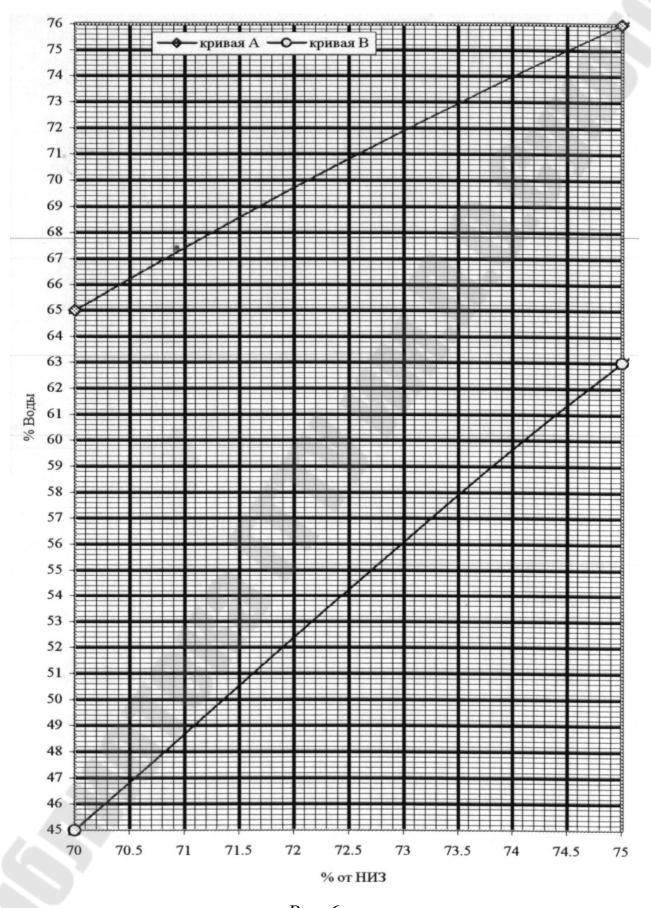

<u>Заключение</u> необходимо начать с темы курсовой работы, обозначить цель курсовой работы, и задачи необходимые для достижения цели. Далее раскрыть значение расчетов и актуальность темы. Кратко описать, проведенные расчеты, привести выводы, связав их с выработкой запасов.

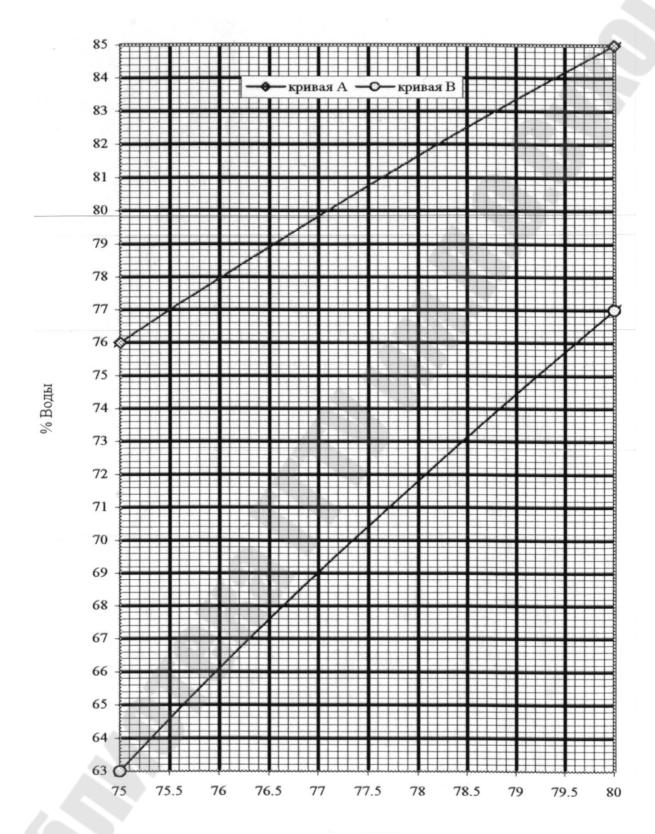
приложение 3


Кривые выработки начальных извлекаемых запасов нефти

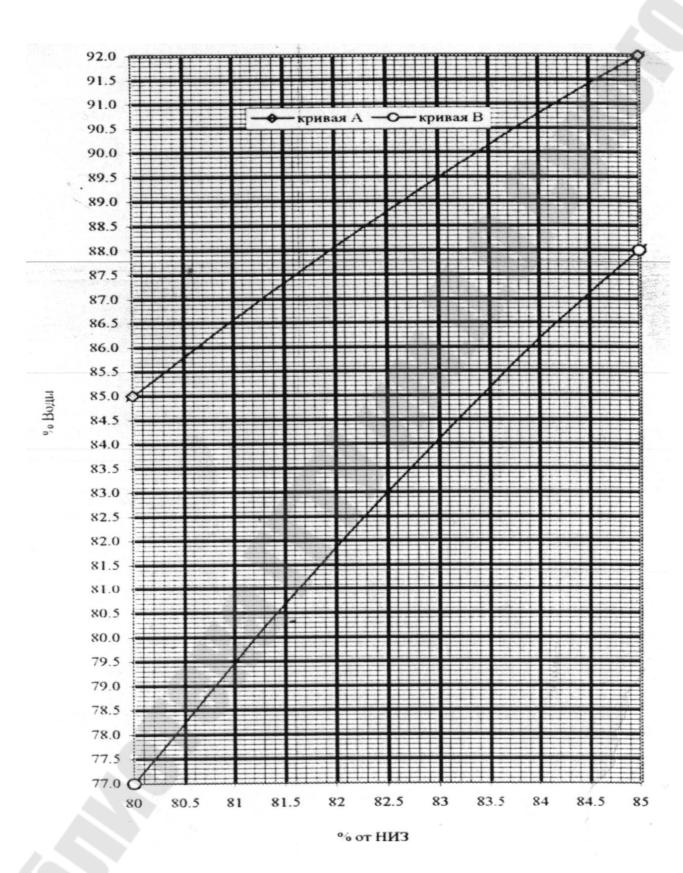


Puc.1

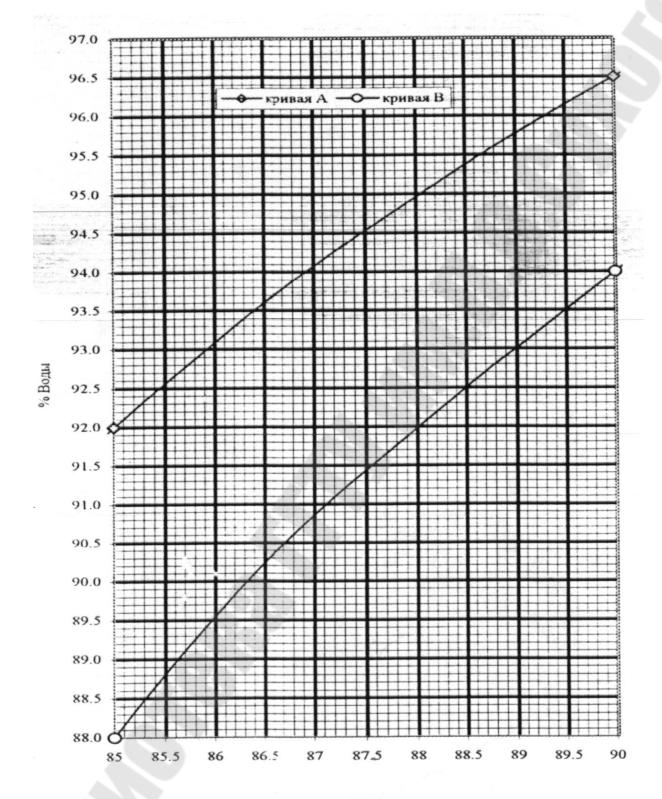

Puc. 2



% от НИЗ *Puc. 4*

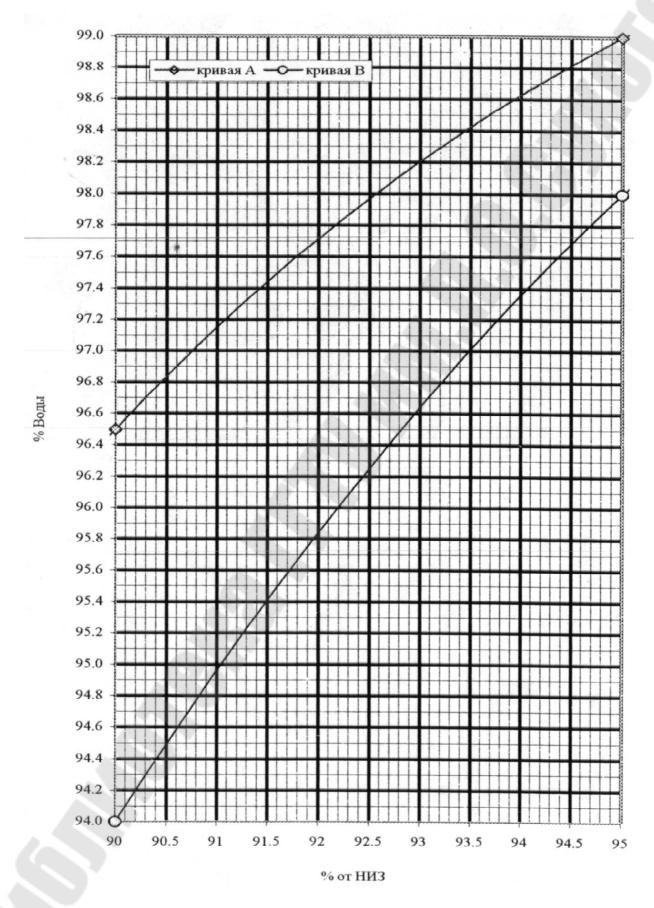


Puc. 6

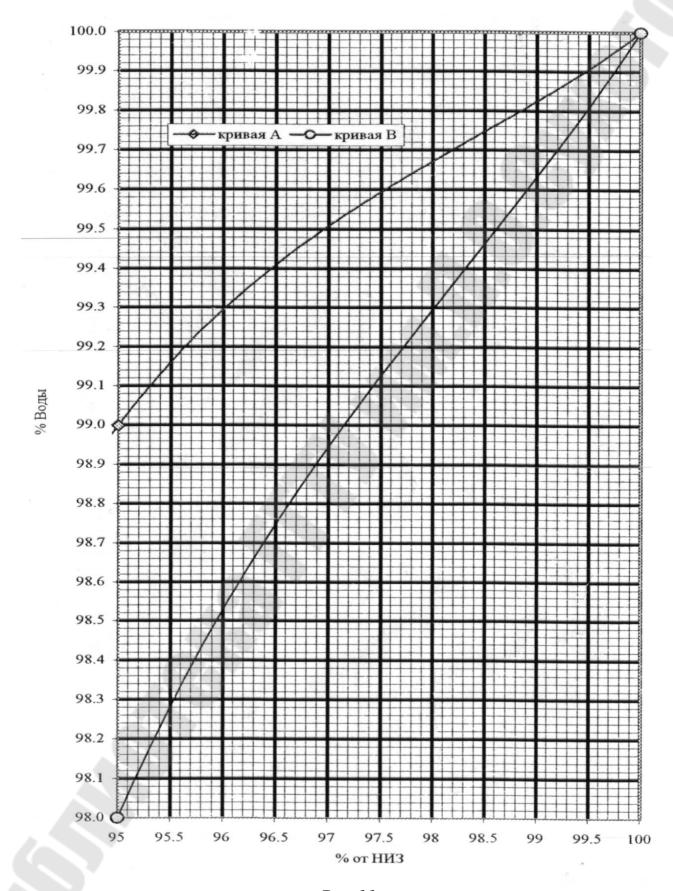


% от НИЗ

Puc. 7



Puc.8



% от НИЗ

Puc.9

Puc.10

Puc.11

ЛИТЕРАТУРА

- 1. Жданов М.А. Методы подсчета подземных запасов нефти и газа / М.А. Жданов. М.: Госгеолиздат., 1952 254с.
- 2. Гиматудинов Ш.К. Справочное руководство по проектированию и эксплуатации нефтяных месторождений. Добыча нефти / Ш.К. Гиматудинов. М.: Недра, 1983. 562 с.
- 3. Бойко В.С. Разработка и эксплуатация нефтяных месторождений / В.С. Бойко. М.: Недра, 1990 484 с.
- 4. Базлов М.Н. Технология и техника добычи нефти и газа/ М.Н. Базлов. М.: Недра, 1971 504 с.
- 5. Желтов Ю.П. Разработка нефтяных месторождений / Ю.П. Желтов. М.: Недра, 1986-315 с.
- 6. Лысенко В.Д. Инновационная разработка нефтяных месторожлений, М., Недра. 2000.

Шепелева Ирина Сергеевна

РАЗРАБОТКА НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

Учебно-методическое пособие по курсовой работе для студентов специальности
1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения