Доклады Академии Наук СССР 1937. том XV, № 1

ФИЗИКА

А. А. ШИШЛОВСКИЙ

СРАВНЕНИЕ СПЕКТРОВ АБСОРБЦИИ И ФЛУОРЕСЦЕНЦИИ АНТРА-ЦЕНА В РАЗЛИЧНЫХ АГРЕГАТНЫХ СОСТОЯНИЯХ

(Представлено академиком С. И. Вавиловым 10 II 1937)

1. В последние годы появилось несколько работ, посвященных выяснению роли молекулярных ударов на характер распределения энергии

Фиг. 1.

в спектре флуоресценции растворов (¹). Были подтверждены и ранее хорошо установленные факты, что спектры абсорбции и флуоресценции растворов обычно при переходе к различным растворителям лишь смещаются как целое по шкале длин волн, сохраняя свой вид (²), и что структура спектра флуоресценции растворов не зависит от длины волны возбуждающего света. Это последнее обстоятельство побудило А. Яблоньского (³) высказать в 1932 г. некоторые теоретические соображения о роли среды, молекулярное воздействие которой проявляется в постоянстве спектров флуоресценции маловязких растворов, причем энергетический избыток при переходе к возбуждению короткими длинами волн рассеивается средой. В связи с этим представляло интерес провести последовательное сравнение спектров абсорбции и флуоресценции одного и того же вещества в различных агрегатных состояниях и в особенности сравнение спектров растворов со спектрами разреженных паров. С этой целью и была поставлена данная работа.

Подходящих объектов исследования, флуоресцирующих в различных агрегатных состояниях, до сих пор было известно очень мало. Классическим примером мог служить антрацен (C₁₄H₁₀), с которого и были начаты исследования. Изучение данного объекта ведется не впервые (⁴), но оно не было полным и не отвечало выше поставленным целям.

2. Спектры абсорбции антрацена в парах, растворах и кристаллическом состоянии

Спектры абсорбции паров и растворов антрацена получены фотографическим методом В. Анри—К. Шефера (⁵) с помощью спектрографа средней разрешающей силы.

Концентрация и толщина сосуда в обоих случаях вариировали в одних и тех же пределах. Результаты измерений представлены графически на фиг. 1. Кривая A—спектр абсорбции раствора антрацена, кривая A'' спектр абсорбции паров антрацена. Черточками под линией K фиг. 1, A'указано схематично положение центров полос поглощения кристаллического антрацена по литературным данным. Кроме того результаты сведены в табл. 1.

Таблица 1

Д анные		Агрегатное состояние	По шкале длин волн λ в m μ							
С. Каппера и К. Марха	}	Кристалл.	377	358	341	325		_		
И. Обреимова и Л. Прихотько А. В. Анри Автора »	}	» Раствор " Пары	(393) 371 375 377 364	353 355 358 351	337 338 341 333	326 328 313				

Сравнение положения максимумов спектра абсорбции антрацена

Данные	Агрегатное состояние	По	По шкале частот -				$\frac{1}{\lambda}$ cm ⁻¹			
С. Каппера и К. Марха	Кристалл.	2 655	2 795	2 935	3 075	_	-			
И. Обреимова и Л. Прихотько А. В. Анри Автора »	» Рэствор " Пары	(2543) 2 692 2 667 2 651 2 745	2 831 2 813 2 790 2 850	2 969 2 956 2 928 3 003	 3 066 3 045 3 198	 3 415 3 435 3 502				

*

Из сравнения спектров абсорбции антрацена по нашим измерениям и данным, имеющимся в литературе, следует:

а) Спектры абсорбции антрацена в различных агрегатных состояниях сохраняют внешнее подобие.

б) Спектры смещены относительно друг друга в длинноволновую сторону спектра при переходе от парообразного состояния и раствора к твердому кристаллическому состоянию.

в) Ближайшие полосы поглощения паров антрацена по исследованиям Обреимова и Прихотько могут быть расщеплены каждая еще на две. Такой же вид имеют спектры абсорбции кристаллического антрацена при низких температурах.

г) Относительная интенсивность полос поглощения в парах отлична от растворов.

3. Распределение энергии в спектрах флуо-

ресценции паров и растворов антрацена

Измерение распределения энергии в спектрах флуоресценции производилось фотографическим способом по методу сравнения почернений в спектре флуоресценции с марками спектра источника света с известным спектральным распределением энергии, которые наносились на той же фотопластинке при той же экспозиции. Возбуждение производилось областью 405—313 mµ через фильтр ИЗОС Ф. С.-2 с максимумом пропускания в области ртутной линии 366 mµ.

Графически результаты приведены на фиг. 1: кривая F—спектр флуоресценции раствора антрацена, кривая F''—спектр флуоресценции паров антрацена. Черточки над линией K фиг. 1, F' изображают положение центра полос флуоресценции кристаллического антрацена.

Кроме того все данные относительно флуоресценции антрацена сведены в табл. 2.

Таблица 2

Данные	Агрегатное состояние	По шкале длин волнλ в mμ					По шкале частот $\frac{1}{\lambda}$ см ⁻¹						
Доуэлла Л. Обре- имова	Кристалл.	-	-	425	449	474	498	-	_	2 353	2 224	2 107	2 008
и др.	>>	-	409	434	461	475	495		2444	2 304	2 169	2 105	2 0 2 0
Доуэлла	Раствор	-	403	425	450	481		_	2 4 8 1	2 353	2 2 2 2 2	2 0 7 9	
Автора	»	383	405	422	447			2 6 1 1	2 4 6 9	2 367	2 234	_	
Эльстона	Пары	-	390	415	432	-		-	2564	2 4 0 9	2 3 1 5	-	
Автора	»	375	390	410	432	-	-	2 6 6 7	2564	2 4 3 9	2315		-

Сравнение положения максимумов полос спектра флуоресценции антрацена в различных агрегатных состояниях

Из сравнения приведенных данных о флуоресценции антрацена следует: а) Спектры флуоресценции чистого антрацена в различных агрегатных состояниях сохраняют внешнее подобие. Они состоят из четырех главных полос.

б) Спектры смещены относительно друг друга в длинноволновую сторону, как и спектры абсорбции, при переходе от парообразного состояния и раствора к кристаллам. в) Спектры флуоресценции паров антрацена имеют значительно более размытую структуру полос, чем спектр флуоресценции раствора.

г) Распределение энергии в спектрах флуоресценции антрацена в различных агрегатных состояниях различно.

4. Спектры флуоресценции антрацена при монохроматическом возбуждении

Зависимость спектров паров антрацена от длины волны возбуждающего света была исследована с помощью кварцевой ртутной лампы, монохрома-

тора Лейсса и спектрографа Государственного оптического института светосилы 1:0.5.

Пары возгонялись в двойном кварцевом сосуде вудовского типа с независимым электрическим обогреванием каждого порознь.

Давление паров было выбрано настолько малым (чтобы время соударений между молекулами оставалось значительно больше длительности возбужденного состояния молекулы антрацена в парах, имеющей величину порядка $\sim 1 \cdot 10^{-9}$ сек.), что при возбуждении резонансной линией ртути свечение паров по интенсивности приближалось к порожному значению адаптированного на темноту глаза. К этому же значению с помощью ослабления возбуждающего пучка фотометрическими сетками было доведено суммарное свечение паров антрацена и при возбуждении их 366 и 313 mµ. На одной фотопластинке путем экранирования щели спектрографа получены один под другим 3 спектра. Микрофотограммы этих спектров представлены на фиг. 2. Исследование относительного распределения энергии в спектре флуоресценции раствора антрацена было проведено в тех же условиях, что и в опытах с парами, при возбуждении соответственно длинами волн 366, 313 и 253 mµ. Алкогольный раствор антрацена концентрации $2 \cdot 10^{-4}$ г/см³ был заключен в плоскопараллельную кювету из кристаллического нефлуоресцирующего кварца. Спектрографирование производилось с той же стороны кюветы, что и возбуждение под углом 45° к направлению возбуждающего пучка. Микрофотограммы почернений представлены на фиг. 3.

В тех же самых условиях были получены спектры флуоресценции и кристаллического антрацена при монохроматическом возбуждении. Пары антрацена конденсировались в виде мелких кристалликов на пластинке из кристаллического кварца. Пластинка устанавливалась затем в положение, которое занимала раньше кювета с раствором антрацена, после чего производилось спектрографирование при возбуждении вышеуказанными длинами волн.

Из сравнения результатов зависимости спектров флуоресценции антрацена от длины волны возбуждающего света в различных его агрегатных состояниях следует:

а) Спектры флуоресценции разреженных паров антрацена при переходе к возбуждению короткими волнами деформируются весьма значительно, теряя свою характерную структуру четырех полос, размываясь в сплошной спектр, который однако сохраняет свое общее положение по шкале длин волн.

б) Спектр флуоресценции алкогольных растворов антрацена сохраняет свою форму и относительную величину интенсивностей полос.

в) Спектр флуоресценции чистого кристаллического антрацена ведет себя практически так же, как и в растворе.

5. Для более полного и всестороннего выяснения роли среды в вопросах явления флуоресценции необходимо дальнейшее исследование не только спектров, но также остальных характерных свойств флуоресценции, длительности возбужденного состояния и величины предельной поляризации. Исследование должно быть распространено и на другие объекты помимо антрацена. Такие вещества нами найдены. Вопреки выводам Кенигсбергера и Купферера (⁶), которые в 1912 г. тщетно искали свечения органических красителей в парах, нам удалось возбудить свечение в парах таких типичных красителей, как флуоресцеин, родамин В, родулин оранж и др. Интересно отметить, что уже по первым полученным спектрам флуоресценции паров, в частности флуоресцеина и родулина, видно, что они по своему виду очень схожи со спектрами тех же веществ в растворах.

Вышеизложенные исследования проведены по предложению акад. С. И.Вавилова, которому я выражаю свою признательность за его постоянное внимание к работе.

Лаборатория люминесценции. Государственный оптический институт. Ленинград. Поступило 10 II 1937.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА,

¹ А. Jabloński, C.R.Soc. Pol. Phys., 7, 1 (1926); J. Starkiewicz, С. R. Soc. Pol. Phys., IV, 73 (1929); Л. Тумерман, ДАН, I, 473 (1935); Е. Lommel, Доклады Акад. Наук СССР, 1937, т. XV, № 1. 3 Wied. Ann., 8, 244 (1879); L. Nichols u. E. Merritt, Phys. Rev., 18, 403 (1904). ² P. Margulies, Acta Phys. Pol., 3, 373 (1934); V. L. Lewschin, Acta Physicochimica USSR, 1,682 (1934); 2, 221 (1935). ³ A. Jabloński, ZS. f. Physik, 73,460 (1932). ⁴ J. Hartley, Journ. Chem. Soc., 39, 162; O. Knoblauch, Wied. Ann., 54, 192; T. S. Elston, Astrophys. Journ., April (1907); L. S. M'Dowell, Phys. Rev., 26, 455 (1908); S. Coppera. J. K. March, Journ. Amer. Chem. Soc., 47, 2847 (1925); I. Obreimowu. L. Prichotjko, Sow. Phys., 1, 203 (1932); Sow. Phys., 9, 34 (1936). ⁵ V. Henri, Phys. ZS., 14, 515 (1913); K.Schaefer, ZS. f. angew. Chemie, 33, 25 (1920). ⁶ J. Königsberger u. K. Küpferer, Ann. d. Phys., 37, 601 (1912).