Актуальность темы:

В качестве методики исследования был выбран метод численного моделирования. Данный метод позволяет производить виртуальные эксперименты процессов обработки материалов давлением, которые дают возможность проводить оценку напряжённо-деформированного и теплового состояния заготовки в процессе обработки. Определять нагрузки, действующие на инструмент, а так же прогнозировать дефекты в заготовках и износ инструмента в процессе эксплуатации. Данный метод отличается высокой точностью, так как в его основе лежит комплекс математических зависимостей реалогии упругой и пластической деформации металлов, законов и теорем механики сплошных сред.

В качестве исходных данных для создания модели использовались параметры из таблицы прокатки для производства трубы 168,3х4,5 мм из стали 20 из и настройки стана в условиях реального производства.

Адекватность модели доказана сравнением величин полученных в результате численного эксперимента с данными полученными на действующем оборудовании.

Для определения оптимальных настроечных параметров раскатного стана был проведён ряд виртуальных экспериментов с различными скоростными режимами контролируемо-перемещаемой оправки: 1,7 м/с, 2,0 м/с, 2,3 м/с, 2,6 м/с и 2,9 м/с.

Исследование, проведённое в данной работе, позволило выполнить анализ напряжённо-деформированного состояния металла в процессе раскатки трубы 168,3х4,5 мм из стали 20, определить влияние скоростного режима оправки на распределение напряжений в очаге деформации, на величину износа валков и оправок, на значения нагрузок, действующих на прокатный инструмент.

Определено, что оптимальная скорость движения оправки при раскатке черновой трубы должна быть равна скорости металла на выходе из первой клети раскатного стана.

Практическая значимость полученных результатов:

- 1. Численная модель процесса раскатки может быть использована для определения оптимальных настроечных параметров трёхвалкового раскатного стана и позволит сократить затраты и время на этапе настройки и оптимизации процесса.
- 2. Полученные результаты могут быть использованы для настройки скоростных режимов контролируемо-перемещаемой оправки при раскатке черновых труб.

Анализ влияния геометрии выпусков ящичного калибра клети №1 стана 370/150 OAO «БМЗ» УКХ «БМК» на образование термоциклических трещин

Автор: Стрельченко Александр Владимирович, студент гр. МД-51 кафедры «МиТОМ» УО ГГТУ им. П.О. Сухого

Руководители: Астапенко Игорь Васильевич, к.с-х.н., доцент каф. «МиЛТОМ» УО ГГТУ им. П.О. Сухого

При эксплуатации валков с ящичными калибрами существуют нерешенные проблемы, связанные с образованием сетки разгара на дне и трещин на стенке калибра, которые приводят к уменьшению ресурса валков. Проблема вызвана термоциклическими напряжениями на поверхности калибров и неравномерным нагревом и охлаждением выпусков калибров валков.

В данной работе исследуется влияние геометрии выпусков ящичного калибра клети №1 стана 370/150 на образование термоциклических боковых трещин.

Цель работы - определить оптимальный профиль выпусков ящичного калибра, что позволит повысить его стойкость и качество проката.

Поставленная цель достигается решением следующих задач:

- 1. Разработать методику расчёта термоциклических напряжений при горячей прокатке в ящичном калибре;
- 2. Построить адекватную численную модель горячей прокати в клети №1 с ящичным калибром;
- 3. С помощью численных экспериментов на адекватной численной модели процесса определить оптимальные геометрические параметры выпусков ящичного калибра для повышения стойкости калибра по термоциклическим напряжениям.

Актуальность темы:Образование боковых трещин на выпусках ящичных калибров имеет характерные особенности, отличающиеся по причинам и механизму образования от сетки разгара. Для поиска этих причин использовался метод построения адекватной численной модели и проведения с ее помощью численных экспериментов прокатки в клети №1 черновой группы стана 370/150 OAO «БМЗ».

Рисунок 1 - Чугунный валок клети №1:

а) сетка разгара по дну калибра; б) боковые трещины на выпуске калибра.

Исследовалось влияние геометрии ящичного калибра на образование боковых трещин. Для этого было проведено три численных эксперимента с разными вариантами геометрии калибра клети №1 (рис.2):

- 1) по геометрии калибра применяемой калибровки валков клети №1 (рис.2а);
- 2) с заменой радиуса выпуска на катет (рис.2б);
- 3) с увеличением угла и уменьшением радиуса выпуска (рис.2в).



Рисунок 2 – Варианты геометрии калибра клети №1 для численного моделирования.

Адекватность численной модели доказывается путем сравнения данных полученных экспериментальным и результатов численной модели, построенной по геометрии калибра действующего производства. Экспериментальная часть заключалась в снятии теплограмм калибра валка клети №1 СПЦ-2 ОАО «БМЗ» (рис.3).

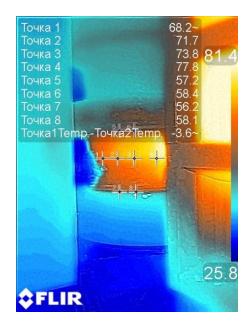


Рисунок 3 – Теплограмма калибра валка клети №1 черновой группы стана 370/150.

Анализ результатов моделирования позволяет сделать следующие выводы:

- 1) образование боковых трещин происходит в результате неравномерного температурного расширения боковой поверхности и дна калибра;
- 2) с помощью изменения геометрии выпуска калибра можно влиять на динамику и равномерность температурного расширения поверхности калибра и значительно ее уменьшить, что позволит повысить стойкость прокатных валков.

Разработка режимов насечки рабочих валков на установке электро-разрядного текстурирования (ЭРТ) Цеха холодного проката и покрытий (ЦХПП) ПАО «НЛМК», обеспечивающих наибольшую наработку и наилучшую отпечатываемость

Автор: Хибенков А.В. – вальцовщик стана холодной прокатки ЦХПП ПАО «НЛМК» **Руководитель:** Нагорный С.В. – специалист по технологии прокатного отделения ЦХПП ПАО «НЛМК»

Разработан проект, целью которого является снижение коэффициента расхода рабочих валков, а также снижение выхода несоответствующей продукции с дефектом отпечатки в ЦХПП ПАО «НЛМК».

В настоящее время наблюдается проблема использования в пятой клети непрерывного стана холодной прокатки 2030 ЦХПП рабочих валков, насеченных на установке ЭРТ. На обработанном металле наблюдается дефект «отпечатки». Дефект расположен хаотично по ширине полосы и имеет вид небольших (до 1 мм) блестящих точек. Причиной дефекта является «срезание» пиков в процессе прокатки в силу их низкой «стойкости».

Для повышения «стойкости» микрорельефа поверхности валков был предложен метод комбинированной насечки рабочих валков – первоначальная насечка на установке