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Nonleptonic kaon decaysK → ππ and the matrix element of theK0−K̄0 transition

were studied within the framework of the Quark Con�ned Model using e�ective four-

quark Hamiltonians. The role of intermediate hadronic states in the description of

these processes was studied. It is shown that correct consideration of the intermediate

scalar state f0(600) allows one to obtain the relation γ+− = (Γ(KS→π+π−)
Γ(K0→π+π0)

= 433.84,

which is close to the experimental value, which makes it possible to explain the

∆I = 1
2 rule. Account of intermediate scalar, pseudo scalar and axial vector states

made it possible to obtain the mass di�erence K0
L and K0

S ∆mLS = 3.25×10−15GeV ,

which is in good agreement with the experimental value.
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I. INTRODUCTION

Study of kaon decays has attracted the attention of researchers for decades. The
reason is that kaon decays involve an intricate interplay between weak, electromagnetic
and strong interactions.This decays are of extraordinary interest as a source of information
about a New Physics beyond Standard Model.

The study of nonleptonic decays of kaons makes it possible to study the relationship
between weak and strong interactions of quarks. One of the unsolved problems is the de-
scription of decays with a change in strangeness |∆S| = 1. The problem is that transitions
with a change in isospin I by 3

2
are signi�cantly suppressed compared to transitions with

∆I = 1
2
. Experimentally, this phenomenon manifests itself in the fact that the measured

ratio [? ]

γ+− = (
Γ(KS → π+π−)

Γ(K0 → π+π0)
≈ 463

, which contradicts the estimate γ+− ∼ O(1) obtained from perturbative calculations in
the electroweak theory. Usually, states containing two π mesons in the �nal state are
parametrized in terms of isotopic amplitudes AI (I = 0; 1- isospin of the �nal state) [? ].
Experimental data indicate that

Re|A0

A2

| ≈ 22

This relationship is called the ∆I = 1
2
rule, the nature of which has remained a mystery

for almost sixty years.
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Along with the study of processes in which the strangeness S changes by 1, it seems
interesting to study processes with |∆S| = 2, namely K0− K̄0 transitions. The standard
six-quark scheme [? ],[? ]fails to explain the experimental mass splitting of K0

L − K0
S

mesons.
The calculation of hadronic matrix elements in the most of theoretical approaches

needs a great number of additional parameters and model assumptions . Kaon decays
have been treated in several reviews and lecture notes during the past 30 years [? ].

The purpose of this work is theoretical study nonleptonic interactions of kaons
within the framework of the quark model, namely, to take into account the "large dis-
tances"contributions to the matrix elements of processes with |∆S| = 1; 2 and to obtain
the decay parameters K → ππ and K0 − K̄0 transitions.

II. QUARK-MESON INTERACTIONS

The hadronic interactions is described in the QCM [? ]. The hadron �elds are assumed
to arise after integration over gluon and quark variables in the QCM generating function.
The transition of hadrons to quarks and vice versa is given by the interaction Lagrangian:

LM =
gM√
2
Mq̄aΓλmqa (1)

where Γ- Dirak matrix,λm - is a corresponding SU(3)-matrix,q- quark vector

qaj =

 ua

da

sa


The properties of scalars are not well established and its description needs an additional
assumptions. We use the Lagrangian with additional interaction with derivative [? ]:

LS =
gs√
2
s(x)q(x)(I − i

H

Λ
(
←−
∂̂ −

−→
∂̂ ))λSq(x) (2)

with

λS =

diag(1,−1, 0)⇒ a0(980)

diag(cos δs, cos δs,−
√
2 sin δs)⇒ f0(600)

diag(− sin δs,− sin δs,−
√
2 cos δs)⇒ f0(980)

We use the values of additional parameters H, δs �xed in [? ]:

H = 0.54; δS = 17◦ (3)

The coupling constants gM for meson-quark interaction are de�ned from so-called com-
positeness condition. It us convenient to use interaction constant in a form:

hM =
3g2M
4π2

= − 1∏̃′
M(mM)

(4)

instead of gM in the further calculations. All hadron-quark interactions are described
by quark diagrams induced by S matrix averaged over vacuum backgrounds.

The con�nement ansatz in the case of one-loop quark diagrams consists in following
replacement:∫

dσV ACTr|M(x1)S(x1, x2|BV AC)...M(xn)S(xn, x1|BV AC)| −→∫
dσvTr|M(x1)Sv(x1 − x2)...M(xn)Sv(xn − x1)|, (5)



 

where

Sv(x1 − x2) =

∫
d4p

i(2π)4
e−ip(x1−x2)

1

vΛq − p̂
(6)

The parameter Λq characterizes the con�nement rang of quark with �avor number q =
u, d, s. The measure dσv is de�ned as:∫

dσv

v − ẑ
= G(z) = a(−z2) + ẑb(−z2) (7)

The function G(z) is called the con�nement function. G(z) is independent on �avor or
color of quark. G(z) is an entire analytical function on the z-plane.G(z) decreases faster
then any degree of z in Euclidean region.The choice of G(z),or as the same of a(−z2) andq
b(−z2), is one of model assumptions.I The parameter Λq characterizes the con�nement
rang of quark with �avor number q = u, d, s. We put Λu = Λd = Λn in the most of decays.
Parametre Λq has been �xed by �tting the decay constant of light mesons.

Λn = 460 MeV Λs = 506 MeV (8)

III. THE EFFECTIVE WEAK INTERACTIONS

The quark weak interaction is described by e�ective Lagrangian Leff
w for ∆S = 1 -

transitions . This Lagrangian is a sum of usual four-quark operators [? ] :

Leff
w =

GF

2
√
2
VudV

∗
us

6∑
i=1

ciOi (9)

where four-quark local operators Oi are chosen in following way:

O1 = (dOµ
Ls)(uO

µ
Lu)− (dOµ

Lu)(uO
µ
Ls) (10)

O2 = (dOµ
Lu)(uO

µ
Ls) + (dOµ

Ls)(uO
µ
Lu) +

2(dOµ
Ls)(dO

µ
Ld) + 2(dOµ

Ls)(sO
µ
Ls)

O3 = (dOµ
Lu)(uO

µ
Ls) + (dOµ

Ls)(uO
µ
Lu)− (dOµ

Ls)(sO
µ
Ls)

O4 = (dOµ
Lu)(uO

µ
Ls) + (dOµ

Ls)(uO
µ
Lu)− (dOµ

Ls)(dO
µ
Ld)

O5 = (dOµ
Lλ

as)
∑

q=u,d,s

(qOµ
Rλ

aq)

O5 = (dOµ
Ls)

∑
q=u,d,s

(qOµ
Rq)

Here Oµ
R,L = γµ(1 ± γ5), λa-Gell-Mann matrices, acting in colour space. The numerical

values of ci depend on QCD parameters µs αs [? ]. In this note we use the set of
coe�cients ci corresponding µs = 0.25 GeV, αs = 0.45 :

c1 = −1.97 c2 = 0.12 c3 = 0.093 c4 = 0.47 c5 = −0.036 (11)

The Hamiltonian with ∆S = 2 is de�ned as [? ],[? ] :

H∆S=2
w =

GF

16π2
V 2
ud(V

∗
us)

2m2
cηO

∆S=2 (12)

where
O∆S=2 = (sOµ

Ld) (sO
µ
Ld) (13)

Numerical value of parameter η, corresponding µs = 0.25 GeV, αs = 0.45 is η = 0, 78.



 

IV. K → ππ DECAYS

The diagrams de�ning the decays K → ππ Decays are shown in Fig.1 and Fig.2.
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The corresponding amplitudes are written as:

A0 =
GF

2
√
2
VudV

∗
us{(c1+2c2+2c3+2c4)T

1
Kππ+(c5+

3

16
c6)T

5
Kππ+(c5+

3

16
c6)T

5
Kf0

Df0)(m
2
Kgf0ππ(m

2
K)}

(14)

A2 =
GF

2
√
2
VudV

∗
usc4T

1
ππ (15)

Here the notation is introduced:

T i
Kππ =

∫
dx1dx2dx3dye

ip1x1+ip2x2+ip3x3⟨0|T (Lπ(x1)Lπ(x2LK(x3))O
i(y))|0⟩ (16)

T 5
Kf0

,Df0(m
2
K are de�ned by (?? ) and (??), gf0ππ(m

2
K) is a form factor of f0(600)→ ππ

calculated with m2
f0

= m2
K [? ].

The matrix elements of the decays with ∆I = 1
2
(K0

Sπ
+π−,K0

Sπ
0π0) de�ned by both

the contact diagrams (Fig 1b) and the pole one with intermediate f0(600) meson (Fig 2).
The relative contributions from di�erent diagrams to K0

S → π+π− amplitude are given in
Table 1.

Table 1

M(K0
S → π+π−)

MO1−O4

M

MO5

M

M
f0(600)
O5

M

38, 2× 10−8GeV 0, 228 0, 016 0, 756



 

Table 1 showes that the contribution of an intermediate scalar state plays important
role in the explanation of the ∆I = 1

2
rule.

V. K0
L −K0

S TRANSITION

The matrix element of the K0 −K0 transition is determined by the graphs shown in
Fig. 3, where H∆S=2

w and H∆S=1
w are determined by(??) , (??).
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The matrix element de�ned by the diagram shown in Fig. 3a is written as:

MSD(K
0 → K

0
) =

GF

16π2
V 2
ud(V

∗
us)

2m2
cηT

∆S=2
K0K0

(17)

where

T∆S=2

K0K
0 =

∫
dx1dx2dye

ipx1+ipx2⟨0|T (LK0(x1)LK
0(x2)O

∆S=2(y))|0⟩ (18)

Using the Fierz transformation, after standard calculations we obtain:

T∆S=2

K0K
0 =

8

3
m2

Kf
2
K (19)

The contribution of "large" distances MLD can be calculated by considering diagrams
with all possible single-particle intermediate states (Fig. 3b).

The matrix element corresponding to the contribution of "large" distances can be
written in the form:

MLD(K
0 → K

0
) =

∑
M=P,S,A

DM(m2
K)

[
M(K0 →M)

]2
(20)

where M(K0 →M)- matrix element of K0 →M transition:

M(K0 →M) =
GF

2
√
2
VudV

∗
us

6∑
i=1

ciT
i
KM (21)

Here

T i
KM =

∫
dx1dx2dye

ipx1+ipx2⟨0|T (LK(x1)LM(x2)O
i(y))|0⟩ (22)



 

DM(m2
K)-the propagator of the intermediate meson, which can be written in the form:

DM(p2) =
1

ΠM(p2)− ΠM(m2
M) + imMΓM

(23)

ΠM(x)-mass operator for pseudo scalar and scalar mesons and the transverse part of a
polarization operator in the case of axial vector mesons.

Thus, the K0 −K
0
matrix element can be written as:

M12 = MSD(K
0 → K

0
) +MLD(K

0 → K
0
) (24)

The K0
L −KS

0 mass K0
L −KS

0 di�erence is related with real part of M12 as:

∆mLS =
ReM12

2mK

(25)

ReM12 = MSD(K
0 → K

0
) +ReMLD(K

0 → K
0
) = (26)

= MSD +
∑

M=P,S,A

[
M(K0 →M)

]2 ΠM(p2)− ΠM(m2
M)

(ΠM(p2)− ΠM(m2
M))

2
+m2

MΓ2
M

(27)

According to (??) ∆mLS = ∆mSD +∆mLD, where ∆mSD is the contribution of "small"
distances (by means of �rst term in (??), while the ∆mLD describes the contribution from
"large" distances (by means of taken into account all possible intermediate one particle
states).

As a result we have

∆mSD = 2.01× 10−15Gev (28)

that is near 58 % of the experimental one [? ].

∆mLD = 1, 21× 10−15GeV (29)

The relative contributions of the intermediate mesons to ∆mSD are shown in Table 2:
Table 2
Meson π η η′ f0(600) f0(980) a0(980) a1(1260) f1(1285) f1(1420)

−0, 186 0, 452 0, 007 0, 169 0, 291 0, 085 0, 075 0, 055 0, 085
Summing up (??) and (??)we �nally have :

∆mLS = 3, 25× 10−15GeV (30)

Experimental value is [? ]:

∆mexp
LS = (3, 484± 0, 006)× 10−15GeV (31)

VI. CONCLUSION

Analytic expressions for the matrix elements of the nonlepton decays K0
S →

π+π−,K+ → π+π0 are obtained within the framework of the e�ective four-quark Hamilto-
nian.It turned out that the K+ → π+π0 decay with a change in isospin I by 3

2
is described

only by the operator O4, while the decay of K0
S → π+π− with ∆I = 1

2
is described by

all operators O1 −O6. It turned out that the ampli�cation of the decay amplitudes with



 

∆I = 1
2
is due to the in�uence of the operator O5, but it is not su�cient to explain the

ampli�cation of the amplitudes by more than two orders of magnitude.
In the framework of the four-quark e�ective Hamiltonian with ∆S = 2, the transition

matrix elementK0−K̄0 is obtained. It is shown that the account of strong and electroweak
interactions only at small distances leads to the value of the mass di�erence K0

L and K0
S,

which is only 58% of the experimental value.
It turned out that correct consideration of the intermediate scalar state f0(600) allows

one to obtain the relation

γ+− = (
Γ(KS → π+π−)

Γ(K0 → π+π0)
= 433.84

, which is close to the experimental one (??), which makes it possible to explain the rule
∆I = 1

2
.

Account of intermediate scalar, pseudoscalar and axial vector states made it possible
to obtain the mass di�erence K0

L and K0
S

∆mLS = 3.25× 10−15GeV

, which is in good agreement with the experimental value.
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