ГОМОГЕНИЗАЦИЯ МИКРОПОРИСТОГО ОБЪЕМА ГОРНОЙ ПОРОДЫ МЕТОДОМ ИНДЕНТИРОВАНИЯ ДЛЯ ПОСТРОЕНИЯ ЦИФРОВОЙ ГЕОМЕХАНИЧЕСКОЙ МОДЕЛИ КЕРНА

БОЧАРОВ Н. В. (студент гр. HP-31) Научный руководитель – Ткачев В. М. Гомельский государственный технический университет им. П.О. Сухого г. Гомель, Республика Беларусь

Актуальность. Создание объекта «цифровой керн» на основе его изображений компьютерной томографии, является актуальной научнотехнической задачей, активно развиваемой в последние годы ведущими нефтегазодобывающими компаниями. Компьютерная томография стандартных образцов керна ($>30 \times 60$ мм) не позволяет сохранить микропоры, размер которых меньше разрешения съемки. Поэтому разработка методов сохранения влияния таких микрообъектов на компьютерное моделирование стандартных образцов керна является актуальной задачей.

Цель работы — разработка принципов гомогенизации упорядоченнопористых объемов горной породы на основе использования различных критериев прочности материалов (критерий Друкера-Прагера или Мора-Кулона). Граничные условия для этих критериев могут определяться дюрометрическим методом при испытании натурного образца.

Результаты исследования. Метод гомогенизации основного объема породы, содержащего равномерно распределенную микропористость, сохраняя крупные макродефекты, заключается в сегментации неразрешенной пористости в единую с матрицей породы фазу. Влияние микропор на упругопрочностные свойства породы учитывается, главным образом, при индентировании. Дальнейшее моделирование предполагает применение специальных критериев прочности материалов (критерий Друкера-Прагера или Мора-Кулона). Т.е. основной объем горной породы, содержащий микропористость, может моделироваться как однородный материал. В данной работе граничные условия, необходимые для применения критериев Друкера-Прагера или Мора-Кулона определялись в результате обработки телеметрических данных испытания одного и того же образца индентированием.

Заключение. Данный подход позволяет исследовать влияние распространенной в Припятском прогибе вторичной неоднородности, представленной кавернами и трещинами, на механические свойства горной породы. При этом появляется возможность создать цифровой геомеханический керн стандартного образца с геометрическими размерами >30×60 мм.