340 Секция VIII. Физические и математические методы исследования

Рис. 3. Затухающий периодический режим (2): пространственно-временной портрет линии роста

Работа выполнена в рамках работы по заданию ГПНИ «Энергетические и ядерные процессы и технологии», подпрограмма – «Энергетические процессы и технологии». Руководитель задания – профессор О. Н. Шабловский.

Литература

- 1. Шабловский, О. Н. Морфологические свойства линии роста двухмерного дендрита в переохлажденном расплаве / О. Н. Шабловский // Прикладная физика. – 2012. – № 4. – С. 40–46.
- 2. Шабловский, О. Н. Динамика неустойчивости волновых возмущений и боковое ветвление дендрита в переохлажденном расплаве / О. Н. Шабловский, Д. Г. Кроль // Успехи прикладной физики. 2022. Т. 10, № 2. С. 189–202.

РАЗРАБОТКА МЕТОДА ОБНАРУЖЕНИЯ ИНТЕРФЕРЕНЦИОННЫХ ЭФФЕКТОВ НОВЫХ НЕЙТРАЛЬНЫХ ПРОМЕЖУТОЧНЫХ БОЗОНОВ В ПРОЦЕССЕ ЭЛЕКТРОН-ПОЗИТРОННОЙ АННИГИЛЯЦИИ В ПАРУ КВАРКОВ

Д. В. Синегрибов¹, В. Р. Куриленко¹

¹Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

²Учреждение образования «Гомельский государственный университет имени Ф. Скорины», Республика Беларусь

Научные руководители: И. А. Серенкова¹, В. В. Андреев²

Разработан метод обнаружения интерференционных эффектов новых нейтральных промежуточных бозонов в процессе $e^+ + e^- \rightarrow b + \overline{b}$ с помощью асимметрии вперед-назад A_{FB} на будущих электрон-позитронных коллайдерах CLIC и ILC; получены модельнонезависимые ограничения констант связи Z'-бозонов для заданного процесса; сравнены полученные результаты с аналогичными расчетами для процесса $e^+ + e^- \rightarrow \mu^+ + \mu^-$.

Ключевые слова: асимметрия вперед-назад, Z'-бозон, Стандартная модель, модельнонезависимые ограничения.

Международный линейный коллайдер ILC предназначен для исследования свойств таких фундаментальных частиц, как кварки и электроны, а также состояний взаимодействия частиц, которые нельзя наблюдать в других экспериментах. Первоначально планировалось завершить его строительство в 2019 г., но из-за значительных задержек (финансовых, технических, а также международных соглашений) окончание строительства планируется в 2026 г. Компактный линейный коллайдер CLIC предназначен для изучения физики элементарных частиц на более высоких энергиях. CLIC – проект, разрабатываемый в CERN (Европейская организация ядерных исследований), предложенный в качестве следующего этапа после Большого адронного коллайдера LHC. Реализация проекта пока находится на этапе исследований и технического проектирования.

Интригующим вопросом современной физики элементарных частиц является наличие новых частиц за пределами Стандартной модели (СМ). Точные измерения на ILC и CLIC позволят оценить различные характеристики новых тяжелых частиц. Предполагаемая энергия столкновений: $\sqrt{S_{ILC}} = 1$ ТэВ, $\sqrt{S_{CLIC}} = 3$ ТэВ.

Информация о массе и константах связи Z'-бозонов была бы весьма существенной для проверки новых теорий. Косвенное проявление Z'-бозона состояло бы в обнаружении отклонений физических наблюдаемых величин от поведения, предсказываемого СМ.

В приближении Борна дифференциальное сечение реакции $e^+ + e^- \rightarrow b + \overline{b}$ для продольно поляризованных начальных пучков имеет вид [1]:

$$\frac{d\sigma}{d\cos\theta} = N_C \frac{\pi\alpha_{e.m}^2}{2S} \left[\left(1 + \cos^2\theta\right) F_1 + 2\cos\theta F_2 \right],\tag{1}$$

где θ – угол рассеяния между направлением движения начального электрона и вылетающего *b*-кварка; N_c – цветовой фактор (3 или 1 для конечных кварков или лептонов соответственно); $\alpha_{e,m}^2 = 1/129$ – константа электромагнитного взаимодействия.

Функции F_{1.2} могут быть выражены в терминах амплитуд спиральности:

$$F_{1,2} = \frac{1}{4} \Big[(1 + P_e) (1 - P_{\bar{e}}) \Big(|A_{RR}|^2 \pm |A_{RL}|^2 \Big) + (1 - P_e) (1 + P_{\bar{e}}) \Big(|A_{LL}|^2 \pm |A_{LR}|^2 \Big) \Big], \quad (2)$$

где P_e и $P_{\bar{e}}$ – степени продольной электронной и позитронной поляризаций. Амплитуды спиральности $A_{\alpha\beta}(\alpha,\beta=L,R)$ могут быть представлены в виде диаграмм Фейнмана, изображенных на рис. 1.

Рис. 1. Диаграммы Фейнмана для процесса $e^+ + e^- \rightarrow b + \overline{b}$

Полное сечение рассеяния о:

$$\sigma = \int_{-1}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta = N_C \sigma_{pt} F_1 = \frac{1}{4} \left[(1+P_e)(1-P_{\bar{e}})(\sigma_{RR} + \sigma_{RL}) + (1-P_e)(1+P_{\bar{e}})(\sigma_{LL} + \sigma_{LR}) \right], \quad (3)$$

342 Секция VIII. Физические и математические методы исследования

Асимметрия вперед-назад A_{FB} :

$$A_{FB} = \frac{\sigma_{FB}}{\sigma} = \frac{3F_2}{4F_1}.$$
(4)

Для количественного представления интерференционной картины рассмотрим три случая, отличающиеся друг от друга разным выбором фермионных констант связи v'_f и a'_f , но с одной и той же массой $M_{Z'}$:

1) векторный Z'_{V} -бозон ($v'_{f} = 1, a'_{f} = 0$);

2) аксиальный Z'_{A} -бозон ($v'_{f} = 0, a'_{f} = 1$);

3) аксиально-векторный Z'_{AV} -бозон ($v'_f = 1$, $a'_f = 1$).

На рис. 2 представлена энергетическая зависимость асимметрии вперед-назад (4) при различном выборе фермионных констант связи.

Рис. 2. Энергетическая зависимость асимметрии для Стандартной модели и для модели, предсказывающей существование *Z*'-бозона с продольно поляризованными начальными пучками и массой *M_x* = 5 ТэВ

Если не удастся обнаружить отклонения от СМ на уровне достигнутой или ожидаемой экспериментальной точности, то в этом случае можно провести модельно-независимый анализ и получить ограничения на параметры Z'.

Для выполнения анализа удобно использовать модельно-независимую параметризацию лептонных констант связи Z'-бозона:

$$V_f = V_{Z'}^f \sqrt{\frac{g_{Z'}^2}{4\pi} \frac{M_Z^2}{M_{Z'}^2 - s}}, \quad A_f = A_{Z'}^f \sqrt{\frac{g_{Z'}^2}{4\pi} \frac{M_Z^2}{M_{Z'}^2 - s}}.$$
 (5)

Чувствительность наблюдаемых σ можно оценить с помощью функции χ^2 с двумя степенями свободы, определяемой соотношением:

$$\chi^2 = \left(\frac{\Delta\sigma}{\delta\sigma}\right)^2 + \left(\frac{\Delta A_{FB}}{\delta A_{FB}}\right)^2.$$
 (6)

Экспериментальная погрешность бо учитывает как статистическую, так и систематическую ошибку. Критерием для ограничений модельно-независимых лептонных констант связи v'_i и a'_i служит условие, согласно которому $\chi^2 < \chi^2_{crit}$. Величина χ^2_{crit} определяется требуемым уровнем статистической достоверности. Уровень статистической достоверности соответствует двум стандартным отклонениям. На рис. 3 представлены ограничения на константы связи Z'-бозона для *b*-кварков, полученные с помощью выполненного модельно-независимого анализа.

Рис. 3. Модельно-независимые ограничения на константы Z' -бозонов (a', v'), полученные из комбинированного анализа полного сечения и асимметрии вперед-назад при энергии $\sqrt{S_{_{CLIC}}} = 3$ ТэВ и массе $M_{_{Z'}} = 5$ ТэВ

Разработан теоретический метод обнаружения интерференционных эффектов новых нейтральных промежуточных с помощью асимметрии вперед-назад A_{FB} . В результате проведенного анализа можно сделать следующие выводы: предсказать Z' можно при энергиях $\sqrt{S} < M_{Z'}$ по наличию отклонения от поведения CM; энергия, при которой асимметрия становится отрицательной, будет свидетельствовать о приближении к реальной массе Z'; по сравнению результатов с аналогичными для процесса $e^+ + e^- \rightarrow \mu^+ + \mu^-$ [2] можно заключить, что обнаружить Z' более вероятно для распада в пару мюонов, без начальной поляризации пучков и при выборе фермионных констант связи, соответствующих векторному Z'_V -бозону ($v'_f = 1, a'_f = 0$); получены модельно-независимые ограничения на константы Z'-бозона для процесса $e^+ + e^- \rightarrow b + \overline{b}$.

Таким образом, исследование асимметрии является очень важной задачей для дальнейших экспериментов на будущих электрон-позитронных коллайдерах.

344 Секция VIII. Физические и математические методы исследования

Литература

- Osland, P. Model-independent limits on four-fermion contact interactions at LC with polarization / P. Osland, A. A. Pankov // Phys. Lett. B. – 1998. – Vol. 432. – P. 159–166.
- Model-independent analysis of the effects of new heavy gauge bosons at high energy electronpositron colliders / D. V. Sinegribov [et al.] // XXVIII International seminar in memory of Prof V. I. Kuvshinov "Nonlinear Phenomena in Complex Systems". – 2021. –Vol. 27. – P. 440–447.

ВОЗМУЩЕННОЕ СОСТОЯНИЕ ЛИНИИ РОСТА ДЕНДРИТА В ПЕРЕОХЛАЖДЕННОМ РАСПЛАВЕ

Н.С.Селиверстов

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Д. Г. Кроль

Объект исследования – линия роста свободного дендрита в переохлажденном расплаве чистого серебра. Выполнен анализ возмущенных состояний линии роста. Получены аналитические зависимости влияния ширины зоны неоднородности и угла заострения линии роста на параметр затухания. Проанализировано влияние ширины зоны неоднородности на скорость волны. Представлена графическая информация о свойствах дендритного роста для переохлажденного расплава чистого серебра.

Ключевые слова: дендритный рост, высокоскоростная кристаллизация, линия роста дендрита, переохлажденный расплав.

Важной проблемой современного материаловедения является получение новых высокоэффективных материалов. Одно из перспективных направлений – использование сверхвысоких скоростей кристаллизации глубоко переохлажденного расплава. В ходе экспериментальных исследований были достигнуты скорости роста 50 м/с при переохлаждениях до 300 К [1]. Цель данной работы – изучить свойства возмущенного состояния линии роста дендрита при высокоскоростной кристаллизации серебра.

Дифференциальное уравнение, описывающее малое возмущение f = f(y, t) исходной фазовой границы кристаллизации (ФГК), имеет вид [2, 3]:

$$\partial^2 f / \partial y^2 = B_1(\partial f / \partial y) + B_2(\partial f / \partial t), \tag{1}$$

 $A_1 = N / \sin \theta_1$, $A_2 = 1 / tg \theta_1$, $B_1 = 2 \varphi A_1 A_2 < 0$, $B_2 = (1 + A_2^2) \varphi > 0$,

$$\alpha = L/(UT_c), \ \varphi = \alpha/\mu, \ A_1, A_2, B \equiv \text{const},$$

где L – теплота фазового перехода единицы объема вещества; μ – кинетический коэффициент роста; T_e – температура равновесия между твердой и жидкой фазами; T_c – равновесная температура кристаллизации; U – поверхностная энергия границы раздела фаз; B – переохлаждение на вершине дендрита; ΔT – переохлаждение расплава; c – объемная теплоемкость; λ – коэффициент теплопроводности; координата xнаправлена вдоль оси симметрии дендрита в сторону твердой фазы; y – поперечная декартова координата; θ_1 – угол заострения линии роста; N – скорость перемещения $\Phi\Gamma$ K; $N_m = -N > 0$.