В результате обобщения вышеизложенного можно сделать следующие выводы:

1. Изучен метод получения субмикронных порошков оксида иттрия, активированных европием и солегированных висмутом, в термохимическом процессе с использованием в качестве горючего смеси карбамида и ГМТА.

2. Процесс осуществляли при температуреподжига смеси 350 °C и температуре прокаливания 650 °C (1 час) в муфельной печи в условиях слабо-окислительной среды. В результате получали порошки с удельной поверхностью $S_{yg} = 7,7-12,8 \text{ м}^2/\Gamma$ и диаметром первичных частиц от 62 до 253 нм.

3. Прокаливание порошков после размола при температурах 900–1200 °C вызывает некоторый рост частиц Y_2O_3 : Eu³⁺, а введение нитрата висмута в систему приводит к полуторному увеличению их размеров, что связано с большей поверхностной энергией висмут-содержащих частиц.

4. Установлено, что при возбуждении порошков на длине волны 395,5 нм (фиолетовое излучение) спектр фотолюминесценции Y_2O_3 : Eu³⁺ демонстрирует узкую полосу с центром на 612 нм (красная область), а введение ионов Ві в структуру в качестве соактиватора ведет к увеличению интенсивности люминесценции на 15–20 %.

Литература

- Hitz, Breck. Yb : Y₂O₃ Ceramic Laser Generates 4.2 W / Breck Hitz // Optics Letters. 2004. N 6. – P. 1212–1214.
- Mouzon, J. Synthesis of Yb : Y₂O₃ nanoparticles and fabrication of transparent polycrystalline yttria ceramics / J. Mouzon.– Luleå : Luleåtekniskauniversitet, 2005. – 126 p.
- Luminescent properties of Y₂O₃: Eu synthesized by sol-gel processing / J. Zhang [et al.] // Journal of Materials Processing Technology. 2002. Vol. 121, N 2/3. P. 265–268.
- Штольц, А. К. Рентгеновский анализ микронапряжений и размера областей когерентного рассеяния в поликристаллических материалах / А. К. Штольц, А. И. Медведев, Л. В. Курбатов. – Екатеринбург, 2005. – Режим доступа: http://window.edu.ru/resource/729/28729/files/ustu336.pdf. – Дата доступа: 07.08.20.

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ФОРМИРОВАНИЯ НАНОДИСПЕРСНЫХ АЛМАЗОВ ДЕТОНАЦИОННОГО СИНТЕЗА

Е. В. Кузнецова

Учреждение образования «Гродненский государственный университет имени Янки Купалы», Республика Беларусь

Научный руководитель Е. В. Овчинников

Изучены технологические особенности формирования нанодисперсных алмазов детонационного синтеза; показаны этапы извлечения алмаза из шихты; выделены наиболее эффективные способы синтеза нанодисперсных алмазов; отражены факторы, оказывающие влияние параметров синтеза на выход и качество детонационных наноалмазов (ДНА) и алмазной шихты после взрыва; представлены возможные варианты подрыва заряда для получения ДНА.

Ключевые слова: нанотехнологии, углеродные наноматериалы, ультрадисперсные алмазы, алмазосодержащая шихта, синтез.

В настоящее время одним из динамично развивающихся направлений являются углеродные наноматериалы и связанные с ними нанотехнологии. Нанотехнологии в современном мире носят межотраслевой характер, поскольку проникают практически во все сферы деятельности: медицину, биотехнологии, машиностроение, энергетику, электронику и др.

90 Секция II. Материаловедение и технологии обработки материалов

Несмотря на многообразие углеродных наноструктурированных материалов различной формы (фуллерены, нанотрубки, графен, луковичный углерод, наноалмаз и др.), в Республике Беларусь пока только производство наноалмаза детонационного синтеза достигло уровня промышленных масштабов.

Примечательным примером реализации принципов нанотехнологий на практике может являться разработка детонационного синтеза наноразмерных алмазов и их применение для получения материалов и покрытий различного функционального назначения с улучшенными эксплуатационными свойствами [1–4].

Цель настоящей работы состояла в изучении особенностей формирования нанодисперсных алмазов детонационного синтеза.

Под наноалмазами детонационного синтеза или ультрадисперсными алмазами понимают как собственно продукт детонации углеродсодержащих взрывчатых веществ (УДАГ) – алмазосодержащую шихту, так и получаемые из нее после химической обработки очищенные алмазы (УДА).

Алмазосодержащая шихта (АШ, УДАГ) представляет собой композиционный материал, каждая частица которого состоит из сверхтвердого и инертного алмазного ядра (носителя основных алмазных свойств наноалмаза), покрытого оболочкой из графита, аморфного и луковичного углерода, а также из различных функциональных групп, способных активно участвовать в различных химических реакциях.

Рис. 1. Структура частицы УДА до (а) и после (б) очистки [5]: 1 – адсорбированные газы и радикалы; 2 – графит; 3 – луковицеподобный графит; 4 – алмазное ядро

Полного превращения углерода в алмазную форму при синтезе алмаза не происходит, и в результате образуется шихта в виде смеси алмаза с неалмазными формами углерода (НФУ). Вследствие этого можно отметить, что важной составляющей технологии получения алмаза является извлечение алмаза из шихты синтеза и очистка алмаза от различных примесей.

Извлечение алмаза из шихты осуществляется с помощью химического выделения и обычно состоит из трех этапов, представленных на рис. 2.

Рис. 2. Схема извлечения алмаза из шихты

В работе [6] выделены основные факторы, отражающие влияние параметров синтеза на выход и качество детонационных наноалмазов (ДНА) и алмазной шихты после взрыва. К ним относят: состав компонентов заряда и его удельная мощность; кислородный баланс (КБ); плотность и габаритные размеры заряда; состав и теплоемкость газовой среды во взрывной камере (ВК); соотношение массы заряда и объема камеры; влияние добавок в заряд взрывчатого вещества (ВВ).

Согласно [7] существуют три варианта подрыва заряда для получения ДНА, представленных на рис. 3.

Рис. 3. Варианты подрыва заряда [7]

По сведениям опубликованных данных, для синтеза наноалмазов используется широкий спектр способов, схем и реакционных систем. Наиболее распространенными и эффективными являются следующие способы:

1. Ударное высокоскоростное воздействие на систему металл-графит (сажа) в литом (чугун) или порошкообразном состоянии с применением различных схем нагружения.

2. Детонационный способ воздействия на графит (сажу), находящихся в смеси со взрывчатым веществом.

3. Получение алмаза при детонации BB с отрицательным кислородным балансом (т. е. с меньшим, чем стехиометрическое, содержанием кислорода) в неокислительной среде.

Наноалмазы детонационного синтеза (УДА) являются мощными перспективными структурообразующими компонентами для различных композиционных материалов и покрытий нового поколения, эффективной технологической средой для суперфинишной обработки, основой для селективных адсорбентов и катализаторов и др.

Предприятиям и изготовителям Республики Беларусь, которые хотят быть конкурентоспособными, важно вести поиск в наномасштабе, что, в свою очередь, требует наличия соответствующего оборудования и специально обученного персонала, способных реализовать и развивать накопленный научно-технический потенциал.

Литература

1. Структурные особенности алмазных нанокристаллов / В. А. Лиопо [и др.] // Прогрессив. технологии и системы машиностроения. – 2017. – Т. 56, № 1. – С. 73–83.

92 Секция II. Материаловедение и технологии обработки материалов

- Скаскевич, А. А. Структура и технология малонаполненных машиностроительных материалов на основе конструкционных термопластов, модифицированных углеродными нанокластерами : автореф. дис. ... канд. техн. наук / А. А. Скаскевич. – Минск, 2000. – 18 с.
- 3. Нанокомпозиционные функционализированные полимерные материалы / Е. В. Овчинников [и др.] // Прогрессивные технологии и системы машиностроения. 2020. № 2 (69). С. 63–70.
- 4. Триботехнические характеристики композиционных материалов, модифицированных функционализированными углеродными частицами / Е. В. Овчинников [и др.] // Фундамент. проблемы радиоэлектр. приборостроения. – 2018. – Т. 18, № 2. – С. 375–379.
- 5. Наноалмазы детонационного синтеза: получение и применение / П. А. Витязь [и др.]; под общ. ред. П. А. Витязя. Минск : Беларус. навука, 2013. 381 с.
- Долматов, В. Ю. Современное состояние проблемы: детонационные наноалмазы промышленное получение и применение / В. Ю. Долматов, Н. М. Лапчук, С. Д. Писаревский // Наноструктурные материалы: технологии, свойства, применение : сб. науч. ст. – Минск : Беларус. навука, 2017. – С. 96–108.
- 7. Новые аспекты в теории и практике детонационного синтеза, свойствах и применении наноалмазов / В. Ю. Долматов [и др.] // Успехи химии. 2020. Т. 89, № 12. С. 1428–1462.

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА И МИКРОСТРУКТУРЫ СТАЛИ НА КОРРОЗИОННУЮ СТОЙКОСТЬ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ В УСЛОВИЯХ УГЛЕКИСЛОТНОЙ КОРРОЗИИ

Ю. И. Попкова

Белорусский научно-исследовательский и проектный институт нефти Республиканское унитарное предприятие «Производственное объединение «Белоруснефть»

А. Я. Григорьев

Институт механики металлополимерных систем имени В. А. Белого НАН Беларуси

Представлены результаты стендовых коррозионных испытаний сталей насоснокомпрессорных труб в реальных скважинных средах нефтяных месторождений РУП «Производственное объединение «Белоруснефть». Оценивалась коррозионная стойкость среднеуглеродистых сталей марок 32Г1А N80 (Q)APISpec5CT, 37Г2Ф Е ГОСТ 633, низколегированных сталей марок 30X L80 (1)APISpec 5CT, 32ХГ P110 APISpec 5CT, 25ХГБ К72 ГОСТ 31446, 30ХГМА-1 C90APISpec 5CT. Обнаружено, что среднеуглеродистая трубная сталь в горячекатаном состоянии с крупнозернистой структурой подвержена более интенсивным локальным повреждениям в сравнении с аналогичной сталью после закалки с высоким отпуском, имеющей мелкозернистую структуру. Анализ данных состава и микроструктуры исследованных материалов свидетельствует, что в заданных материалов, является содержание марганца более 1 мас. %, разнозернистость и наличие металлографической структуры вид манитетта. Полученные результаты могут быть использованы при выборе материалов насосно-компрессорных труб, эксплуатируемых в условиях нефтяных месторождений Республики Беларусь.

Ключевые слова: коррозия, скважина, нефтяное месторождение, трубная сталь, низколегированная сталь, элементный состав, микроструктура.

С учетом больших глубин залегания продуктивных пластов в условиях добывающих скважин нефтяных месторождений Беларуси промышленно применяются насосно-компрессорные трубы (НКТ) группы прочности N80 (Q)APISpec 5CT.