УЛК 621. 763: 629.192

ВЛИЯНИЕ НАПОЛНИТЕЛЯ НА ПОДАТЛИВОСТЬ КОМПОЗИЦИОННОГО МАТЕРИАЛА

М. И. МИХАЙЛОВ $^{1+}$, Ю. М. ПЛЕСКАЧЕВСКИЙ 2 , А. А. КАРПОВ 1 , З. Я. ШАБАКАЕВА 1

¹ УО «Гомельский государственный технический университет имени П. О. Сухого», пр. Октября, 48, 246022, г. Гомель, Беларусь

УО «Белорусский национальный технический университет», пр. Независимости, 65/7, 220027, г. Минск, Беларусь.

Изучено влияние наполнителей на податливость полимерного композиционного материала. В качестве основы выбрана композиция из эпоксидной и полиэфирной смол с соответствующими для этих смол отвердителями. В качестве наполнителей использовались абразивный материал и отработки после шлифования различных материалов. Установлено, что на физико-механические свойства композита наибольшее влияние оказывает тип наполнителя и его концентрация.

Введение

Изучению свойств полимеров и композиций на их основе с целью определения путей их оптимального использования в качестве покрытий, в том числе фрикционного назначения, посвящено большее число научных исследований. Их анализ показывает, что большинство полимеров может быть использовано для создания композитов различного назначения. Однако в каждом конкретном случае и особенно с учетом условий эксплуатации требуется подбор композита с заданными физико-механическими и технологическими свойствами, чтобы обеспечить необходимый ресурс конструкций по надежности и долговечности. Исследования физико-химических аспектов отверждения ненасыщепных полиэфирных и эпоксидных смол, содержащих фрикционные добавки и дисперсные наполнители, позволяют разработать новые материалы с определенными физико-механическими и фрикционными свойствами и обосновать их использование в сборном режущем инструменте [1-4].

Постановка задачи и методика исследования

Цель данного исследования – изучение влияния различных наполнителей на податливость композиционного фрикционного материала. Контактная податливость влияет на геометрическую, статическую и динамическую составляющие сборного инструмента. Предварительные эксперименты позволили в качестве полимерной матрицы выбрать композицию из эпоксидной и полиэфирной смол с соответствующими для этих смол отвердителями [5]. В качестве наполнителей ис-

пользовались абразивные материалы или отработки после шлифования различных материалов (табл. 1). Процентное соотношение каждого из компонентов композиционного материала было выбрано после предварительных экспериментов и составило: наполнитель – 20%*; эпоксидная смола – 45%; полиэфирная смола – 20%; отвердитель для эпоксидной смолы – 12%; отвердитель для полиэфирной смолы – 3%.

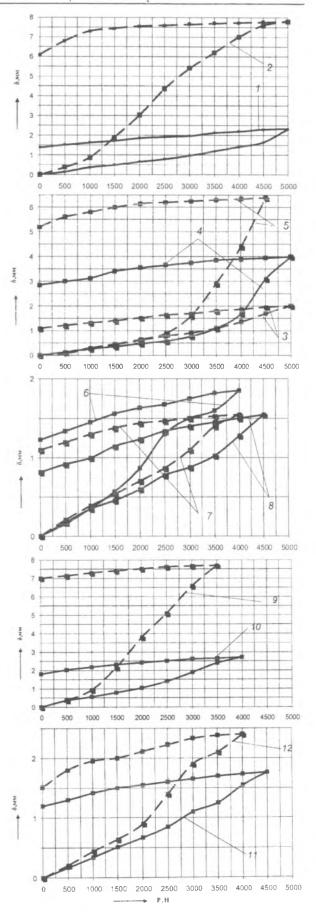
Таблица 1. Состав наполнителей

Напол- нитель	Вид наполнителя	Примечание			
1	Электрокорунд нормальный (15А40)	Зернистость 40			
2	Электрокорунд белый (25АМ40)	Зернистость М40			
3	Электрокорунд белый (25А40СМ); стальная стружка (сталь P6M5); эмульсия	Подвергался про- греву и выгоранию примесей			
4	25A40CM; стальная стружка (сталь 25XIT); эмульсия	Подвергался про- греву и выгоранию примесей			
5	24A40СМ; стальная стружка (сталь 45)				
6	24A40CM; стальная стружка: чугунная стружка				
7	25A40CM; стальная стружка (сталь 20)				
8	Электрокорунд белый (25А40СТ); стальная стружка (сталь 65Г); эмульсия	Подвергался про- греву и выгоранию примесей			
9	Электрокорунд хромистый (34А40СМ), стальная стружка (сталь У10); эмульсия	Подвергался прогреву и выгоранию примесей			
10	34A 40 СМ; стальная стружка (сталь P6M5); эмульсия	Подвергался прогреву и выгораник примесей			
11	Карбид кремния зеленый (64С40СМ); твердый сплав				
12	Карбид кремния зсленый (62С40СТ), твердый сплав				

⁺ Автор, с которым следует вести персписку

^{*} Здесь и далее мас %.

Исследованию на сжатие подвергались образцы, изготовленные по ГОСТ 4651-82 для испытаний на сжатие полимерных материалов. Размеры образцов: диаметр 8 мм, высота 15 мм. С каждым наполнителем были изготовлены по четыре образца. Скорость нагружения образцов составляла 50 H/с. Нагружение производилось от 0 до определенной нагрузки, которую выдерживал образец без окончательного разрушения. Измерение деформации образцов производилось через каждые 500 Н непрерывного сжатия образца.


После того, как было проведено нагружение, образцы подвергались непрерывной разгрузке с измерением величины деформации через каждые 500 Н.

По результатам испытания серии образцов, было определено среднее значение деформации каждой композиции. Результаты расчетов представлены в виде графиков зависимости значения средней деформации образцов δ от нагрузки при нагружении образцов и их разгрузке (рисунок).

Далее по данным, полученным в результате опытов, были определены значения коэффициентов податливости при нагружении и разгрузке образцов, при условии что величина ΔP постоянна и равна 500 H (табл. 2).

Результаты эксперимента и их обсуждение

Анализ результатов (рисунок, табл. 2) позволяет заключить, что наибольшей прочностью (выдерживают более высокую нагрузку до разрушения) обладают образцы с наполнителями из электрокорунда № 1-4. Использование в качестве наполнителя только электрокорунда нормального (наполнитель 1) обеспечивает повышение среднего коэффициента податливости в 3-4 раза по сравнению с электрокорундом белым зернистости М40 (наполнитель 2). Применение в качестве наполнителя электрокорунда белого вместе со стружкой из стали Р6М5 (наполнитель 3) понижает средний коэффициент податливости в 2 раза по сравнению с наполнителем электрокорунд белый + сталь 25ХГТ (наполнитель 4) и в 1,165 по сравнению с наполнителем из белого электрокорунда (наполнитель 2). Использование в качестве наполнителя электрокорунда белого вместе со стружкой из стали 65Г (наполнитель 8) позволило повысить предельную нагрузку в 1,125 раза по сравнению с наполнителем из абразива 24А40СМ со стружкой из стали 20 (наполнитель 7) или из конструкционной стали с чугуном (наполнитель 6). Наполнитель 34А40СМ вместе со стружкой из стали Р6М5 (наполнитель 10) позволил повысить предельную нагрузку композиционного материала в 1,33 раза по сравнению с наполнителем из абразива 35А40СМ со стружкой из стали У10 (наполнитель 9). Использование в качестве наполнителя карбида кремния зеленого (64С40СМ) вместе со стружкой из твердого сплава (наполнитель 11), повышает средний коэффициент податливости в 1,53 раза по сравнению с наполнителем из абразива 62С40СТ со стружкой из твердого сплава (наполнитель 12).

Зависимости деформации образцов от нагрузки в цикле нагружение-разгрузка. Цифры у кривых обозначают номер наполнителя

№ напол- нителя	Изменение нагрузки	$\Delta P/\Delta \delta 1$	$\Delta P/\Delta \delta 2$	$\Delta P/\Delta \delta 3$	$\Delta P/\Delta \delta 4$	$\Delta P/\Delta \delta 5$	$\Delta P/\Delta \delta 6$	$\Delta P/\Delta 87$	$\Delta P/\Delta \delta 8$	ΔΡ/Δ89	ΔΡ/Δδ10
1	Нагружение	3333	2273	3846	3125	3846	2632	2381	2174	2174	735
	Разгрузка	3571	4167	5556	3846	8333	8333	3333	7143	5000	16667
2	Нагружение	1282	1042	485	446	373	481	625	625	833	2500
	Разгрузка	714	1000	3571	4545	10000	10000	10000	16667	12500	16667
3	Нагружение	6250	2632	2941	2941	2941	4167	2500	1923	1471	1667
	Разгрузка	4545	4545	6250	4167	4167	8333	5000	7143	6250	10000
5	Нагружение	3846	2941	3125	2778	2000	704	385	333	250	
	Разгрузка	1250	2500	2500	3333	10000	10000	10000	10000	10000	
4	Нагружение	3846	3846	2632	4167	4545	2632	1515	833	357	556
	Разгрузка	3333	3846	1852	3333	500ú	5000	5000	10000	10000	10000
6	Нагружение	3125	2500	2381	1667	1064	2500	5000	2000		
	Разгрузка	4545	4545	4545	7143	10000	7143	7143	16667		
7	Нагружение	2381	2778	3333	2941	3125	2174	1667	3333		
	Разгрузка	5000	5000	6250	8333	16667	16667	16667	25000		
8	Нагружение	2778	2941	4545	3571	2778	5000	3333	2000	1852	
	Разгрузка	5000	6250	3333	5556	5000	8333	10000	10000	10000	
9	Нагружение	1316	893	410	305	385	333	455			
	Разгрузка	3333	3333	4167	5000	5000	10000	16667			
10	Нагружение	1429	2500	2083	2000	1389	1000	1000	1667		
	Разгрузка	2174	3571	3846	4167	5000	5556	12500	10000		
11	Нагружение	2941	2941	2941	3125	2778	2000	3333	1667	2381	
	Разгрузка	5000	4167	6250	10000	10000	10000	10000	16667	16667	
12	Нагружение	2381	2174	2500	1923	833	1000	2500	1667		
	Разгрузка	1724	3333	10000	4545	4545	4545	10000	25000		

Таблица 2. Значения коэффициента податливости ΔΡ/Δδ, Η/мм

Анализируя поведение композиций во время разгрузки можно отметить, что у всех образцов уменьшалась величина начальных деформаций на 0,45...1,2 мм. Наиболее существенное их уменьшение наблюдается у композиций с наполнителями № 2, 4 и 5, у которых во время нагружения величина деформации также была большой. Наиболее незначительное уменьшение начальных перемещений наблюдается у композиций с наполнителями № 7, 11 и 6, т. е. у тех, которые во время нагружения выдерживали наибольшие нагрузки при малой величине деформаций.

Заключение

Полученные результаты позволяют заключить, что применение в качестве наполнителя электрокорунда белого (25A40CM) вместе со стружкой из стали 25XГТ обеспечивает опти-

мальное сочетание прочности композита и демпфирующей способности контактных поверхностей сборного режущего инструмента.

Литература

- Лапицкий, В. А. Физико-механические свойства эпоксидных полимеров и стеклопластиков / В. А. Лапицкий, А. А. Крицук. — Киев. Навукова думка, 1986. — 96 с.
- 2. Липатов, Ю. С. Физико-химические основы наполнения полимеров / Ю. С. Липатов. М.: Химия, 1991. 260 с.
- 3. Погосян, А. К. Фрикционные композиты на основе полимеров / А. К. Погосян [и др]. Мн.: Информтрибо, 1992. 218 с.
- Чернин, И. З. Эпоксидные полимеры и композиции / И. З. Чернин, Ф. М. Смехов, Ю. В. Хирдов – М.: Машиностроение, 1989. – 256 с.
- Михайлов, М. И. Оптимизация состава фрикционного покрытия твердосплавных пластин сборного инструмента / М. И. Михайлов, З. Я. Шабакаева // Материалы, технологии, инструмент, 1996. – № 3. – С. 28–30.

Mikhailov M. I., Pleskachevsky Yu. M., Karpov A. A., and Shabakaeva Z. Ya Effect of filler on ductility of composite material.

The effect of fillers on the ductility of the polymer composite is studied. The matrix was the composition of epoxy and polyester resins with the corresponding curing agents. The fillers were abrasives and grinding waste. It is found that the type and concentration of the filler produce the most marked effect on the physical-mechanical characteristics of the composite.

Поступила в редакцию 2.11.2007.

© М. И. Михайлов, Ю. М. Плескачевский, А. А. Карпов, З. Я. Шабакаева, 2007.