УДК 621.762

ФОРМИРОВАНИЕ МЕТАЛЛОПОРОШКОВОГО ПОКРЫТИЯ ПРИ ГЛУБОКОЙ ВЫТЯЖКЕ ОСНОВЫ

Н. И. СТРИКЕЛЬ⁺, Ю. Л. БОБАРИКИН, М. И. ЛИСКОВИЧ

Гомельский технический университет им. П. О. Сухого, пр-т Октября 48, 246746 г. Гомель, Беларусь.

Pa+зработан новый способ формирования металлопорошкового покрытия совместно с глубокой вытяжкой металлической основы. Проведен энергосиловой анализ процесса, представлены результаты экспериментальных исследований и испытаний полученных образцов.

Введение

Среди способов получения покрытий особое место занимают способы совместной пластической деформации покрытия и основы, осуществляемые в процессах обработки материалов давлением. Возникающие в этих процессах высокие давления, превышающие пределы текучести деформируемых материалов, значительные сдвиговые деформации, разрушение окисных плёнок на поверхности основы, образование ювенильных поверхностей, выход дислокаций на границу основы с покрытием способствуют получению прочного соединения. Одним из факторов, отрицательно влияющим на процесс совместного пластического деформирования, является неравномерное распределение сдвиговых деформаций, физико-механических вызываемое различием свойств и характеристик покрытия и основы, характером движения частиц покрытия, основы и поверхностей деформирующего инструмента.

С целью создания высокоэффективного процесса получения качественных полых металлических деталей с металлопорошковым покрытием разработан способ их изготовления совместной пластической деформацией при глубокой вытяжке [1].

Постановка задачи

Прочность покрытия, его эксплуатационные характеристики во многом определяются величинами напряжений, действующих на границах основы и покрытия при их совместном деформировании.

Для определения этих напряжений рассмотрим схему процесса совместной вытяжки металлической заготовки 2 и порошка 3 с помощью матрицы 1 и пуансона 4 (рис. 1). Для анализа напряженно-деформированного состояния (НДС) материала порошка выделим в очаге деформации бесконечно малый элемент высотой dz и толщиной h_z , средний диаметр которого D_z , и обозначим действующие напряжения: p – нормальные контактные напряжения на границе между основой и порошком и на границе между пуансоном и порошком; τ_o и τ_n – касательные контактные напряжения на границе между пуансоном и порошком; σ_z и $\sigma_z + d\sigma_z$ – нормальные напряжения в выделенных сечениях элемента.

Расчет напряжений p и τ_o будем производить, решая совместно дифференциальное уравнение условия равновесия выделенного элемента и уравнение условия пластичности.

Рис. 1. Схема распределения напряжений в порошковом слое при вытяжке: *1* – матрица; *2* – основа; *3* – металлопорошковый состав; *4* – пуансон

⁺ Автор, с которым следует вести переписку.

Расчет контактных напряжений

Используя методику анализа процесса пластической деформации металлических порошков, приведенную в работе [2], условие пластичности для металлопорошка сформулируем в следующем виде:

$$p - \sigma_z = \frac{h_{\pi}^m \vartheta_{\pi}^m}{h_{\pi}^m} \sigma_{\tau c}, \qquad (1)$$

где h_n – толщина покрытия; ϑ_n – относительная плотность покрытия; *m* – опытный коэффициент; σ_{1c} – усредненное значение сопротивления деформации металлической составляющей порошка, в свою очередь определяемое по формуле:

$$\sigma_{\rm rc} = \sigma_{\rm s} + \vartheta_{\rm B} a_m (h_{\rm H} - h_{\rm B})^n / 2h_{\rm H}^{-n}, \qquad (2)$$

где σ_s — предел текучести металлической составляющей порошка; a_m и n — опытные коэффициенгы, определяемые по кривой упрочнения металла; h_n — начальная толщина очага деформации.

Зависимости (1) и (2) учитывают уплотнение порошка и упрочнение его металлической составляющей в процессе пластической деформации.

Проецируя действующие на элемент силы на ось Z, получим условие пластичности в виде

$$\pi p D_z dz tg(\alpha) - (\sigma_z dh_z + h_z d\sigma_z) \pi D_z - (\tau_o + \tau_n) \pi D_z dz = 0.$$
(3)

Представив соотношения между т и р в виде

$$\tau_0 = f_0 p; \tag{4}$$

$$\tau_n = f_n p, \qquad (5)$$

где f_0 и f_0 – коэффициенты контактного трения порошка по основе и по пуансону, соответственно, и решая совместно уравнения (1) и (3) с учетом (2), получим расчетную зависимость для определения нормального контактного напряжения в зоне соединения порошка и основы:

$$p = \left(\frac{h_{\rm B}}{h_{\rm B}}\right)^m \left\{ \left[\sigma_x + \sigma_{\rm Te} \frac{(m-1) \operatorname{tg} \alpha}{f_{\rm o} + f_{\rm R} - m \operatorname{tg} \alpha} \right] \times \left(\frac{h_{\rm B}}{h_z}\right)^{\frac{f_{\rm o} + f_{\rm R}}{\operatorname{tg} \alpha}} - \sigma_{\rm Te} \frac{(m-1) \operatorname{tg} \alpha}{f_{\rm o} + f_{\rm R} - m \operatorname{tg} \alpha} \left(\frac{h_{\rm B}}{h_z}\right)^m \right\}.$$
(6)

Анализируя выражение (6), можно определить максимальное и минимальное значения контактных напряжений p, а следовательно, и τ_0 .

Максимальные значения контактных напряжений будут присутствовать при $h_z = h_n$. Откуда:

$$p_{\max} = \left(\frac{h_{n} \vartheta_{n}}{h_{n}}\right)^{m} \left\{ \left[\sigma_{x} + \sigma_{\tau c} \frac{(m-1) \operatorname{tg} \alpha}{f_{o} + f_{\pi} - m \operatorname{tg} \alpha} \right] \times \left(\frac{h_{n}}{h_{n}}\right)^{\frac{l_{o} + f_{n}}{\operatorname{tg} \alpha}} - \sigma_{\tau c} \frac{(m-1) \operatorname{tg} \alpha}{f_{o} + f_{n} - m \operatorname{tg} \alpha} \left(\frac{h_{n}}{h_{n}}\right)^{m} \right\};$$

$$\tau_{o} \max = f_{o} \left(\frac{h_{n} \vartheta_{n}}{h_{n}}\right)^{m} \left\{ \left[\sigma_{x} + \sigma_{\tau c} \frac{(m-1) \operatorname{tg} \alpha}{f_{o} + f_{\pi} - m \operatorname{tg} \alpha} \right] \times \left(\frac{h_{n}}{h_{n}}\right)^{\frac{l_{o} + f_{n}}{\operatorname{tg} \alpha}} - \sigma_{\tau c} \frac{(m-1) \operatorname{tg} \alpha}{f_{o} + f_{n} - m \operatorname{tg} \alpha} \left(\frac{h_{n}}{h_{n}}\right)^{m} \right\}.$$

$$(6),$$

Эти максимальные напряжения и будут определять качество соединения покрытия и основы.

Методы испытаний

Для экспериментального исследования процесса были использованы штампы (рис. 2, a, δ) с набором сменных пуансонов диаметром 17; 18,2; 19; 19,5 мм и матрицей диаметром 22 мм для одного штампа и с набором сменных пуансонов диаметром 5; 5,5; 6; 6,5; 7 мм и матриц с углами 5; 10; 15; 20; 30 и 45° для другого. Нанесение покры-

Рис. 2 Общий вид штамнов, матриц и пуансонов для совместной вытяжки металлической основы и металлопорошкового покрытия

Рис. 3. Образцы: 7 – плоская заготовка; 2 – полая заготовка основы после первого перехода вытяжки: 3 – полое композиционное изделие

тия производилось на полые стальные (сталь 08кпВГ) заготовки, получаемые предварительной вытяжкой из листовых заготовок толщиной 1,5 и лиаметром 40 мм в штампе с пуансоном диаметром 22,9, матрицей диаметром 26 мм (рис. 3, *a*) и толщиной 1 и днаметром 19,5 мм в штампе с пуансоном диаметром 8 и матрицей 11 мм (рис. 3, δ). В качестве материала наносимого покрытия использовались следующие порошковые составы: ЖГр2Д10 и ЖГр3.

Штампы устанавливались на универсальную испытательную машину Р-50 с измерением усилия вытяжки и записью диаграммы усилиеперемещение.

Для спекания композиционных изделий использовалась шахтная вакуумная лабораторная электропечь сопротивления СШВЛ-1.2,5/25, температура спекания определялась вольфрам-рениевой термопарой, вакуум измерялся вакууметром ВИТ-2.

Для исследования микроструктуры и микротвердости покрытия, основы и зоны их контакта были подготовлены образцы.

Спеченные образцы были залиты эпоксидным клеем марки «ЭДП» и распилены на четыре части (вдоль и поперек). После шлифовки на абразивном круге, полировки замшей образец был изучен под микроскопом «МЕТАМ-Р1» при увеличении 125 и 317, получены фотоснимки покрытия и границы соединения основы с покрытием (рис. 5).

Для общего обзора объекта применялся слабый по увеличению объектив F = 25 мм, A = 0.25, для более подробного изучения – объективы F = 16, A = 0.30 и F = 6.3, A = 0.65.

Для определения микротвёрдости покрытия и основы исследуемого образца был использован микротвердомер ПМТ-3.

Пределы измерения диагоналей отпечатков на микротвердомере ПМТ-3 (с объективом F = 6,2 мм, A = 0,65) от 0,005 до 0,25 мм, пределы нагрузки от 0,049 до 1,96 Н.

Измерения твердости основы и компонентов покрытия производились при увеличении 138, нагрузке в 1 Н и времени выдержки под нагрузкой 10 c.

Для изучения эксплуатационных характеристик, полученных вытяжкой композиционных изделий типа подшипников скольжения. разработана методика и создано устройство для триботехнических испытаний с определением момента трения в подшипнике и усилия, действующего на подшипник, с помощью тензодатчиков.

Устройство позволяет проводить испытания подшипников скольжения с антифрикционным покрытием в дианазоне изменения числа оборотов в минуту от 80 до 4000 и осевого усилия от 50 до 540 H.

Результаты экспериментов

Полученные расчетные значения величин давления в зоне соединения порошка и металлической основы использованы для расчета величины усилия вытяжки. На рис. 4 представлены опытные и расчетные значения величины общего усилия вытяжки при различных отношениях $h_{\rm H}/h_{\rm n}$.

Качественно кривые, характеризующие взаимосвязь величин общего усилия совместной вытяжки, носят близкий и подобный характер, свиде-

Рис. 4. Расчетные (1) и опытные (2) значения общего усилия совместной пластической деформации покрытия и основы при различных соотношениях $h_{\rm b}/h_{\rm B}$

Рис. 5. Вид основы и покрытия: 1 – основа; 2 – покрытие

тельствующий о существенной зависимости величины усилия от относительного деформационного изменения толщины покрытия $h_{\rm u}/h_{\rm n}$. То, что расчетные значения оказались меньше опытных и эта разница возрастает с увеличением $h_{\rm u}/h_{\rm n}$, свидетельствует о том, что необходимо учить вать изменение контактных условий между основой и матрицей.

После изучения структуры основы и покрытия (рис. 5) можно сделать вывод, что между медной составляющей и основой не обнаруживается хрупких интерметаллических соединений, омеднение порошка графита препятствует растворению атомов углерода в материале основы, в образце отсутствуют микро- и макротрещины и отслоения. Все это свидетельствует о хорошей схватываемости покрытия с материалом основы.

Результаты измерений микротвердости сведены в таблицу, в которой указаны также средняя величина твердости каждого компонента \overline{x} . среднеквадратичное отклонение *S* и коэффициент вариации *v*.

Они были найдены по следующим формулам:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i ; \qquad (9)$$

$$S = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} ; \qquad (10)$$

$$v = \frac{S}{\bar{x}} \cdot 100 , \qquad (11)$$

где x_i – измерение микротвердости, i = 1, 2, 3, ...,

15; $N - \kappa$ оличество измерений ($\overline{N} = 15$).

Для уровня доверительной вероятности 0,95 определены доверительные интервалы для средних значений твёрдости замеренных материалов.

Относительное отклонение выборочного среднего от генерального среднего выражается:

$$t = \frac{\bar{x} - M(x)}{S(\bar{x})},\tag{12}$$

где распределение величин t при числе степеней свободы f = N - 1 находят по таблицам t-распределений (распределение Стьюдента).

Ошибку Δx определения \overline{x} можно записать так:

$$\Delta x = \pm \frac{tS}{\sqrt{N}} \,. \tag{13}$$

Для всех материалов N = 15 и степень свободы f = N - 1 = 14, тогда t = 2,145.

Таким образом для основы:

$$\Delta x_{\rm o} = \pm \frac{2,145 \cdot 9,7}{\sqrt{15}} = \pm 5,56 \; ;$$

для железа:

$$\Delta v_{\pi} = \pm \frac{2,145 \cdot 15,5}{\sqrt{15}} = \pm 8,89:$$

для меди:

$$\Delta x_{\rm M} = \pm \frac{2.145 \cdot 12.9}{\sqrt{15}} = \pm 7,39 \; ;$$

Результаты измерений микротвердости

Материал	Измерение х, МПа															T MIIa	S	v. %
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
Основа (сталь О8кцВГ)	1288	1288	1288	1288	1097	1097	1097	1097	1097	097	1097	1288	1288	1097	1097	1173	9.7	0.8
Wanazo	1097	724	642	946	724	1288	420	642	464	1097	642	514	724	642	642	747	15.5	2.0
Man	420	420	774	572	383	383	824	572	724	946	642	514	420	514	464	568	12,9	2.3
Графит	280	322	350	514	350	254	322	274	322	383	254	254	322	322	297	321	8.0	2.5

для графита:

 $\Delta x_{\rm r} = \pm \frac{2,145 \cdot 8,0}{\sqrt{15}} = \pm 4,59 \,.$

 $1167 < \bar{x}_{o} < 1179;$

 $738 < \bar{x}_{*} < 756;$

 $560 < \bar{x}_{M} < 575;$

 $316 < \bar{x}_{r} < 325.$

Таким образом, исследование микротвердости покрытия изделия свидетельствует о сравнительно небольшом разбросе значений величин микротвердости каждой из составляющих компонентов покрытия, подтверждая, в свою очередь, что новый способ формирования металлопорошкового покрытия совместно с глубокой вытяжкой металлической основы позволяет добиться равномерной деформации компонентов и однородных свойств, благоприятно сказывающихся на значениях эксплуатационных характеристик изделий.

Результаты триботехнических испытаний свидетельствуют о том, что в режиме сухого трения подшипник обеспечил величину коэффициента трения от 0,09 до 0,11 при давлении от 2 до 5 МПа и окружной скорости от 0,5 до 1,0 м/с. Продолжительность работы подшипника в процессе промышленных испытаний на Белорусском металлургическом заводе при тех же режимах в машине свивки металлокорда составила 1000 ч.

Выводы

Получены расчетные зависимости для определения напряжений на границе основа-покрытие при их совместной вытяжке.

Исследования микроструктуры и микротвердости зоны соединения свидетельствуют о том, что новый способ получения покрытия при глубокой вытяжке металлической основы позволяет добиться прочного соединения между слоями, а покрытие имеет равномерные свойства.

При изготовлении этим способом антифрикционных втулок подшипников скольжения достигаются триботехнические характеристики, не уступающие получаемым методами порошковой металлургии, при значительно меньших расходах дорогостоящих порошковых материалов, о чем свидетельствуют стендовые и промышленные ис-

пытания.

Способ может быть также применен для изготовления полых композиционных изделий иного назначения.

Обозначения

dz - высота бесконечно малого элемента, выделенного в очаге деформации материала порошка; D_z - средний диаметр бесконечно малого элемента, выделенного в очаге деформации материала порошка; р – нормальные контактные напряжения на границе между основой и порошком и на границе между пуанссном и порошком; т_о, т_п касательные контактные напряжения на границах основа-порошок и пуансон-порошок; σ_z , $\sigma_z + d\sigma_z$ - нормальные напряжения в выделенных сечениях элемента; h_п - толщина покрытия; 9_п - относительная плотность покрытия; т – опытный коэффициент; о, - предел текучести металлической составляющей порошка; ат, п – опытные коэффициенты, определяемые по кривой упрочнения металла; *h_н – начальная толщина очага деформации*; σ_{тс} – усредненное значение сопротивления деформации металлической составляющей порошка; α – угол наклона рабочей поверхности матрицы к вертикали; fo, fn – коэффициенты контактного трения при перемещении порошка по поверхностям основы и пуансона, соответственно; h_z - текущее значение толщины порошкового слоя в процессе деформации; d_{π} – диаметр пуансона; D_{M} – диаметр матрицы; x, - измерение микротвердости, i = 1, 2, 3, ..., 15; N - количество измерений; \overline{x} средняя величина твердости каждого компонента; S - среднеквадратичное отклонение; v - коэффициенты вариации; t - относительное отклонение выборочного среднего от генерального среднего; Δx – величина ошибки при определении \overline{x} ; f – число степеней свободы.

Литература

- Стрикель Н. И. Бобарикин Ю. Л. Лискович М. И. Сменные композиционные втулки подшипников скольжения // Матер. междунар. науч.-техн. конф. «Современные проблемы машиноведения», Гомель, 2 (1998), 179–180
- Степаненко А. В., Исаевич Л. А. Непрерывное формование металлических порошков и гранул. Минск: Наука и техника (1980)

Strikel N. I., Bobarikin Yu. L., Liskovich M. I

Formation of metal-powder coating at deep drawing of the base.

A new method of metal-powder coating formation in combination with deep drawing of the base was developed. Energy-force analysis of the process as well as experimental study of the samples have been done and the results presented.

Поступила в редакцию 23.06.99.

© Н. И. Стрикель, Ю. Л. Бобарикин, М. И. Лискович, 1999.