

PREPARATION OF NANOSTRUCTURED Y₂O₂S POWDERS, DOPED№ [4016]№ [4016]

A.A. Boiko¹, E.N. Poddenezhny¹, N.E. Drobyshevskaya¹, N.V. Borisenko², Niyazi A.S. Al-Areqi³, Marwan F.S.H. AL-Kamali¹.*

¹Sukhoi State Technical University of Gomel, 48 Oktiabria Av., Gomel 246746, Belarus.
²Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., Kyiv 03680, Ukraine.
³Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz, Yemen.

Abstract

The new method of ultra-dispersed powders preparation of yttrium oxide doped with terbium and sulfur ions (green phosphor) obtained by thermochemical synthesis (combustion) have been studied. It is well known, that sulfur introduction into Y_2O_3 : Tb phosphor improve significantly the light yield, but processes of the preparation and energy transfer at excitations need further investigation. Nanostructured Y_2O_2S : Tb powders were synthesized under the conditions of oxidation-reduction of nitrate salts of yttrium and terbium in the presence of thiourea (TU) and hexamethylenetetramine (HMTA) as a fuel. The method comprises the following steps: preparing the mixture Y(NO₃)₃ •9 H₂O, Tb(NO₃)₃ •9 H₂O, HMTA and TU to form a precursor; heat stirring and drying the mixture to form a gel-type precursor; heat treating the precursor at 650 °C in the muffle furnace to form a nanostructured powders. The average size of such prepared agglomerated powders was in the region of 5–50 mkm. After grinding and calcination on air at 700 – 1100 °C (1 hour) the size of powder particles was in the region of 50–100 nm. The precursors and powders were characterized by DTA, TG, IRspectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectralluminescent analysis. It was shown that the obtained materials have bright luminescence with a maximum at a wavelength of 537 to 563,4 nm (green radiation) when excited at a wavelength of 250 nm, and the size of agglomerates and intensity of the radiation depends on the degree of dispersion and temperature of calcination.

2nd **ICTSA –** 2022

Keywords: Y₂O₂S, Terbium, Nanostructure, SEM.