Тестирование по дисциплине "Рабочие жидкости, смазки и уплотнения гидропневмосистем"

Интерактивный тест в настоящее время размещен на учебном портале по адресу:

https://www.edu.gstu.by/course/view.php?id=560

Данный тест включает в себя 690 вопросов по всем курсу дисциплины "Рабочие жидкости, смазки и уплотнения гидропневмосистем".

Тестирование проводится среди студентов дневной формы обучения для самоподготовки к экзамену, лучшего усвоения теоретического материала, промежуточного или семестрового контроля знаний.

В настоящее время интерактивный тест состоит из ¹⁰ случайно выбранных вопросов из всего списка. Тестовые вопросы закрытого типа. Каждый тестовый вопрос оценивается 1 баллом, в результате получается оценка от 0 до 10.

Количество попыток неограничено во время самостоятельного тестирования, во время конрольного тестирования время ограничено до 60 мин. Учитывается последний оценочный балл.

Тест разработан и внедрен на кафедре "Гидропневмоавтоматика" следующими авторами:

- Андреевец Ю.А. старший преподаватель;
- Лаевский Д.В. асистент.

Лекция № 1. Введение, основные понятия

- 1.1. Что такое «жидкость»?
- а) тела, для которых не свойственна текучесть, т.е. не способность сильно изменять свою форму под действием сколь угодно малых сил;
- б) тела, для которых свойственна текучесть, т.е. способность сильно изменять свою форму под действием сколь угодно малых сил;
- в) тела, для которых не свойственна текучесть, т.е. не способность сильно не изменять свою форму под действием сколь угодно больших сил;
- г) тела, для которых свойственна текучесть, т.е. способность сильно не изменять свою форму под действием сколь угодно больших сил;
- д) тела, для которых свойственна текучесть, т.е. способность заполнять пустоты;
- 1.2. Что такое жидкость?
- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.
- д) физическое вещество, не способное изменять свой объем.
- 1.3. На какие классы делят жидкости:
- а) капельные; б) парообразные;
- в) пенообразные; г) газовыделяющие; д) газообразные.
- 1.4. Какая из этих жидкостей не является капельной?
- а) ртуть; б) керосин; в) нефть; г) жидкий азот. д) глицерин.
- 1.5. Какая из этих жидкостей не является газообразной?
- а) жидкий азот; б) ртуть; в) водород; г) кислород; д) пропан.
- 1.6. Идеальной жидкостью называется
- а) жидкость, в которой присутствует внутреннее трение;
- б) жидкость, способная сжиматься, подходящая для применения;
- в) условная жидкость с абсолютными несжимаемостью и подвижностью частиц, отсутствием сцепления между ними;
- г) жидкость, существующая только при температуре t=16°C;
- д) жидкость в которой отсутствует процесс теплопроводности теплопереноса.
- 1.7. Реальной жидкостью называется жидкость
- а) обладающая абсолютной текучестью;

- б) находящаяся при реальных условиях;
- в) в которой присутствует внутреннее трение при движении;
- г) способная очень быстро испаряться;
- д) в которой отсутствует внутреннее трение при движении.
- 1.8. Какие универсальные элементы присутствуют во всех гидравлических системах:
- а) насосы и гидродвигатели;
- б) рабочая жидкость и дроссели;
- в) рабочая жидкость и уплотнения;
- г) гидродвигатели и уплотнения;
- д) насосы, уплотнения и рабочие жидкости.
- 1.9. Какие элементы гидросистем в значительной мере определяют возможные рабочие параметры, ресурс и надежность конструкций?
- а) насосы и гидродвигатели;
- б) рабочая жидкость и насосы;
- в) рабочая жидкость и уплотнения;
- г) гидродвигатели и уплотнения;
- д) насосы, уплотнения и рабочие жидкости.
- 1.10. Что изучает наука «Химмотология»
- а) рабочие жидкости, уплотнения, смазки и топлива;
- б) рабочие жидкости, смазочные материалы, топлива;
- в) процессы в элементах механизмов, связанных с рабочими жидкостями, смазочными материалами;
- г) уплотнения, методы их производства и внедрения в рабочий процесс;
- д) эксплуатацию рабочих жидкостей и уплотнений.
- 1.11. Выбрать правильное определение понятия «химмотология»:
- а) это свойства и качество рабочих и специальных жидкостей, а также смазочных материалов, топлив, необходимые для механизмов в которых нужна жидкость.
- б) это способность рабочих и специальных жидкостей, а также смазочных материалов, топлив, и др. жидкостей изучать процессы проходящих в элементах механизмов, связанных с этими жидкостями; разрабатывать научные основы требований к качеству, принципам создания и правилам эксплуатации рабочих жидкостей.
- в) это наука изучающая явления связанные с не рациональным использованем топлив, смазочных материалов, рабочих и специальных жидкостей, изучающая губительные факторы связанных с этими жидкостями; разраба-

тывающая научные основы требований не к качеству, а к принципам создания и правилам эксплуатации рабочих жидкостей.

- г) это наука изучившая явления связанные с не рациональным использованием топлив, смазочных материалов, рабочих и специальных жидкостей, имеющая неоспоримые доказательства о губительных факторах связанных с этими жидкостями при использовании в механизмах.
- д) это наука о свойствах, качестве и рациональном использовании топлив, смазочных материалов, рабочих и специальных жидкостей, изучающая процессы в элементах механизмов, связанных с этими жидкостями; разрабатываются научные основы требований к качеству, принципам создания и правилам эксплуатации рабочих жидкостей.
- 1.12. Выбрать правильное определение «герметология»:
- а) это наука, изучающая закономерности герметизации, разрабатывающая научные основы создания и эксплуатации уплотнений.
- б) это наука, изучающая закономерности герметизации, но не связана с разработкой научных основ создания и эксплуатации уплотнений.
- в) это наука, не изучающая закономерности герметизации, но косвенно связана с разработкой научных основ создания и эксплуатации уплотнений.
- г) это наука, не изучающая закономерности герметизации, но только связана с разработкой, созданием и эксплуатацией уплотнений.
- д) это наука, описывающая обеспечения минимальных энергетических потерь, путём изменения свойств рабочих жидкостей.

терь, путем изменения своис	ть работих жидкостей	•		
1.13. Какая наука изучает уп	лотнения и уплотнител	тыную технику?		
а) химмотология;	б) трибология;			
в) герметология;	ология; г) материаловедение; д) биотехнология.			
1.14. Как называются рабочи	не жидкости в различны	ых системах?		
а) масла;	б) тормоз	ные жидкости;		
в) смазочно-охлаждающие ж	кидкости; г) присади	ки;		
д) эмульсии.				
1.15. Какие функции в гидро	системах не выполняе	г рабочая жидкость?		
а) носитель энергии;	б) тормозящая;			
в) охлаждающая;	г) защитная;	д) уплотняющая.		

Лекция № 2 Свойства жидкостей

- 2.1. Основные свойства жидкости, укажите неверный показатель
- а) физико-химические свойства жидкости;
- б) химико-бактериологические свойства жидкости;
- в) эксплуатационные свойства жидкости;
- г) экологические свойства жидкости;
- д) Нет правильного ответа.
- 2.2. Укажите физико-химические свойства жидкости:
- а) вспениваемость, фильтруемость, горючесть, гидролитическая устойчивость;
- б) плотность, испарение, кислотное число, запах, цвет и прозрачность, вязкость;
- в) термокислотная способность, биологическая разлагаемость;
- г) влияние на окружающую среду;
- д) Нет правильного ответа.
- 2.3. Укажите эксплуатационные свойства жидкости:
- а) смазывающая способность; термоокислительная стабильность;
- б) объемное расширение, сжимаемость, теплоемкость, цвет и прозрачность;
- в) негорючесть, токсичность;
- г) несовместимость с конструкционными материалами;
- д) пожаро- и взрывобезопасность.
- 2.4. Укажите экологические свойства жидкости:
- а) газосодержание, индекс вязкости;
- б) антифрикционные, противоизносные и противозадирные свойства
- в) негорючесть, токсичность;
- г) термоокислительная стабильность;
- д) объемное расширение, сжимаемость, теплоемкость, цвет и прозрачность.
- 2.5. Дать правильное определение понятию «плотность»:
- а) это объём жидкости, заключённый в единице массы;
- б) это объём жидкости, заключённый в единице частицы массы;
- в) это масса определённой жидкости, заключённой на единице площади другой более тяжёлой жидкости;
- г) это масса жидкости, заключённую в единице объёма;
- д) это частица веса жидкости, заключённую в единице объёма.
- 2.6. Массу жидкости заключенную в единице объема называют
- а) весом; б) удельным весом; в) удельной плотностью;

г) плотностью; д) относительной плотностью.
2.7. Плотность вещества имеет следующие единицы измерения: а) кг/с; б) $H/к\Gamma$; в) кг/м³; г) м³/с; д) H/c .
2.8. Как изменяется плотность воды в зависимости от температуры ? а) плотность воды имеет минимум при $t=4^{\circ}\mathrm{C}$ и увеличивается при любых других температурах; б) с увеличением температуры до $100^{\circ}\mathrm{C}$ увеличивается; в) плотность воды имеет максимум при $t=4^{\circ}\mathrm{C}$ и уменьшается при любых других температурах; г) плотность воды имеет максимум при $t=7^{\circ}\mathrm{C}$ и уменьшается при любых других температурах; д) с уменьшением температуры увеличивается.
2.9. Как изменяется плотность жидкости в зависимости от давления? а) увеличивается с увеличением давления; б) изменяется незначительно, в расчётах можно принимать постоянной; в) уменьшается с уменьшением давления; г) не изменяется; д) в зависимости от температуры может увеличиваться или уменьшаться.
2.10. Вес жидкости в единице объема называют а) плотностью; б) удельным весом; в) удельной плотностью; г) весом; д) относительной плотностью.
2.11. Выбрать правильное суждение: а) удельным весом называют единицу массы объёма жидкости; б) удельным весом называют объём единицы массы жидкости; в) удельным весом называют вес единицы объёма жидкости; г) удельным весом называют вес единицы плотности жидкости; д) удельным весом называют объём единицы веса жидкости.
2.12. Удельный вес имеет следующие единицы измерения: а) H/M^3 ; б) M^3/H ; в) $K\Gamma/M^3$; г) H/M^2 ; д) C/M^3 .
2.13. Сжимаемость это свойство жидкости а) изменять свою форму под действием давления; б) изменять свой объем под действием давления; в) сопротивляться воздействию давления, не изменяя свою форму; г) изменять свой объем без воздействия давления; д) изменять свою форму без воздействия давления.

- 2.14. Выбрать правильное суждение:
- а) сжимаемость способность жидкости или газа под действием внешнего давления изменять свой вес;
- б) сжимаемость способность жидкости или газа под действием внешнего давления изменять свою массу;
- в) сжимаемость способность атомов жидкости или газа под действием внутреннего давления изменять свой удельный вес;
- г) сжимаемость способность жидкости или газа под действием внешнего давления изменять свой объём;
- д) сжимаемость способность жидкости или газа под действием внешнего давления не изменять свой объём.
- 2.15. Сжимаемость жидкости характеризуется:
- а) коэффициентом Генри; б) коэффициентом температурного сжатия;
- в) коэффициентом поджатия; г) коэффициентом объемного сжатия.
- д) коэффициентом напряжения.
- 2.16. Коэффициент объемного сжатия определяется по формуле:

a)
$$\beta_p = -\frac{1}{\Delta V} \cdot \frac{V_0}{\Delta p};$$
 б) $\beta_p = -\frac{\Delta V}{V_0} \cdot \frac{1}{\Delta p};$ в) $\beta_p = \frac{\Delta p}{V_0} \cdot \frac{1}{\Delta V};$ г) $\beta_p = -\frac{\Delta p}{p_0} \cdot \frac{1}{\Delta V};$ д) $\beta_p = \frac{\Delta V}{V_0} \cdot \frac{1}{p}.$

б)
$$\beta_p = -\frac{\Delta V}{V_0} \cdot \frac{1}{\Delta p}$$
;

B)
$$\beta_p = \frac{\Delta p}{V_0} \cdot \frac{1}{\Delta V}$$
;

$$\Gamma) \beta_p = -\frac{\Delta p}{p_0} \cdot \frac{1}{\Delta V};$$

д)
$$\beta_p = \frac{\Delta V}{V_0} \cdot \frac{1}{p}$$
.

- 2.17. Свойство жидкости обратное сжимаемости это:
- а) текучесть;
- б) вязкость;
- в) упругость;

- г) плотность;
- д) расширение.
- 2.18. Дать правильное определение понятию «упругость»:
- а) это способность жидкости или газа под действием внешнего давления изменять свой вес:
- б) это способность жидкости или газа под действием внешнего давления изменять свою массу;
- в) это способность атомов жидкости или газа под действием внутреннего давления изменять свой удельный вес.
- г) это способность жидкости или газа под действием внешнего давления изменять свой объём.
- д) это способность жидкости или газа под действием внешнего давления не изменять свой объём.
- 2.19. Температурное расширение это
- а) свойство жидкостей изменять объем при изменении температуры;

- б) свойство жидкостей не изменять объем при изменении давления;
- в) свойство жидкостей изменять объем при изменении давления;
- г) свойство жидкостей не изменять объем при изменении температуры;
- д) Нет правильного ответа.
- 2.20. Температурное расширение характеризуется
- а) коэффициентом Генри;
- б) коэффициентом температурного расширения;
- в) коэффициентом поджатия;
- г) температурным коэффициентом объемного расширения;
- д) температурой.
- 2.21. Коэффициент температурного расширения определяется по формуле:

$$β_{\rm T} = \frac{1}{V_0} \cdot \frac{\Delta V}{\Delta T};$$

B)
$$\beta_{\rm T} = \frac{1}{V_0} \cdot \frac{\Delta T}{\Delta V}$$

$$\Gamma) \ \beta_{\mathrm{T}} = \frac{1}{T_0} \cdot \frac{\Delta T}{\Delta V};$$

в)
$$\beta_{\mathrm{T}} = \frac{1}{V_0} \cdot \frac{\Delta T}{\Delta V};$$
 Γ) $\beta_{\mathrm{T}} = \frac{1}{T_0} \cdot \frac{\Delta T}{\Delta V};$ $\beta_{\mathrm{T}} = \frac{1}{V_0} \cdot \frac{\Delta V}{T};$

- 2.22. Способность жидкости образовывать капли связана со свойством:
- а) вязкости;

- б) упругости;
- в) поверхностного натяжения;
- г) сжимаемости;

- д) расширения.
- 2.23. Выбрать правильное суждение:
- а) растворение газов в жидкости невозможно;
- б) растворение газов происходит в результате того, что вес газа меньше веса жидкости;
- в) растворение газов происходит в результате того, что частицы газа из окружающей среды проникают через свободную поверхность жидкости внутрь ее атомов;
- г) растворение газов происходит в результате того, что молекулы жидкости из окружающей среды проникают через свободную поверхность газа;
- д) растворение газов происходит в результате того, что молекулы газа из окружающей среды проникают через свободную поверхность жидкости внутрь нее.
- 2.24. Растворение газа в жидкости приводит к:
- а) увеличению объема жидкости;
- б) увеличению давления жидкости;
- в) увеличению объема и уменьшению давления жидкости;
- г) не влияет ни на величину объема, ни на величину давления;

д) увеличению температуры жидкости.

2.25. Растворение газов – это

- а) способность жидкости поглощать газы, находящиеся в соприкосновении с ней;
- б) способность жидкости распылять газы, находящиеся в соприкосновении с ней;
- в) способность жидкости растворять газы, не находящиеся в соприкосновении с ней;
- г) способность жидкости не поглощать газы;
- д) способность жидкости накапливать газы, не находящиеся в соприкосновении с ней.

2.26. Растворение газов характеризуется

- а) коэффициентом растворимости;
- б) коэффициентом расширения;
- в) коэффициентом поглощения;
- г) коэффициентом объемного растворения;
- д) коэффициентом поверхностного растворения.

2.27. Кавитация - это

- а) нарушение сплошности движущейся капельной жидкости вследствие местного понижения давления ниже критического значения;
- б) нарушение процесса газообразования и последующей конденсации пузырьков воздуха в потоке жидкости;
- в) нарушение сплошности движущейся капельной жидкости вследствие местного повышения давления выше критического значения;
- г) нарушение процесса парообразования и последующей конденсации пузырьков воздуха в потоке жидкости;
- д) Нет правильного ответа.

2.28. Выбрать правильное суждение:

- а) вязкость представляет собой свойство жидкости подвергаться сдвигу её слоёв, что в свою очередь ведёт к улучшению параметров рабочей жидкости;
- б) вязкость представляет собой свойство жидкости сопротивляться сдвигу (скольжению) её слоёв;
- в) вязкость представляет собой важный параметр рабочей жидкости, который выражен частицей веса жидкости, заключённой в единице объёма;
- г) вязкость представляет собой свойство газов и косвенно относится к рабочим жидкостям, характеризуется действием внешнего давления влияющего на изменения веса следуемой среды;

д) вязкость – представляет собой свойство жидкости и газов, обеспечивающая минимальные энергетические потери при действии внешнего давления.
 2.29. Вязкость жидкости это: а) способность сопротивляться скольжению или сдвигу слоев жидкости; б) способность преодолевать внутреннее трение жидкости; в) способность преодолевать силу трения жидкости между твердыми стенками; г) способность перетекать по поверхности за минимальное время; д) способность двигаться против течения.
2.30. По какой формуле можно найти касательное напряжение трения, возникающие в жидкости при движении пластины? $a)\tau = \frac{F}{S}; \text{б})\tau = \frac{S}{F}; \text{в})\tau = \mu \cdot \frac{dy}{dv}; \qquad \Gamma)\tau = \mu \cdot \frac{dv}{dy}; \qquad \text{д})\tau = v \cdot \frac{dv}{dy}.$
2.31. Закон жидкого трения Ньютона имеет вид: a) $\tau = \mu \cdot \frac{du}{dy};$ б) $\nu = \frac{\mu}{\rho}$ в) $\frac{V_{\Gamma}}{V_{\infty}} = k_{\rm p} \cdot \frac{p_2}{p_1};$ г) $\beta_t = \frac{1}{V_0} \cdot \frac{\partial V}{\partial T};$ д) Нет правильного ответа.
2.32. Вязкость жидкости не характеризуется: а) кинематическим коэффициентом вязкости; б) динамическим коэффициентом вязкости; в) градусами Энглера; г) статическим коэффициентом вязкости; д) давлением.
2.33. Кинематический коэффициент вязкости обозначается греческой буквой: а) ν ;
2.34. Динамический коэффициент вязкости обозначается греческой буквой: a) ν ;

2.35. В вискозиметре Энглера объем испытуемой жидкости, истекающего через капилляр равен а) $300~{\rm cm}^3;~$ б) $200~{\rm cm}^3;~$ в) $200~{\rm m}^3;~$ г) $200~{\rm mm}^3;~$ д) $200~{\rm m}$ л.

2.36. Какое название носит коэффициент пропорциональнос	ти μ?
а) кинематический коэффициент вязкости;	
б) термодинамической коэффициент вязкости;	
в) динамический коэффициент вязкости;	
г) гидравлический коэффициент вязкости;	
д) эмпирический коэффициент вязкости.	

2.37. Какую размерность имеет динамический коэффициент вязкости, в системе СИ?

a)
$$\left[\mu\right] = \frac{H \cdot \text{сек}}{\text{м}^2};$$
 б) $\left[\mu\right] = \frac{H \cdot \text{м}^2}{\text{сек}};$ в) $\left[\mu\right] = \frac{\text{M}^2}{H \cdot \text{сек}};$ г) $\left[\mu\right] = \frac{H}{\text{M}^2 \cdot \text{сек}};$ д) $\left[\mu\right] = \Pi \text{a} \cdot \text{сек}.$

- 2.38. Какое название носит коэффициент у?
- а) кинематический коэффициент вязкости;
- б) термодинамической коэффициент вязкости;
- в) динамический коэффициент вязкости;
- г) гидравлический коэффициент вязкости;
- д) эмпирический коэффициент вязкости.

2.39. Какую размерность имеет кинематический коэффициент вязкости, в системе СИ?

```
a) [v] = \text{CTOKC};

6) [v] = \text{CM}^2/\text{C};

B) [v] = \text{C/CM}^2;
```

 $\Gamma) \ [\nu] = M^2/c;$

д) [v] = сантистокс.

2.40. По какой формуле находится кинематический коэффициент вязкости?

a)
$$v = \frac{\mu}{y} \cdot v$$
; б) $v = \frac{\mu}{y \cdot v}$; в) $v = \frac{\mu}{\rho}$; r) $v = \frac{\rho}{\mu}$; д) $v = \frac{v}{\mu}$.

2.41. Какую размерность имеет кинематический коэффициент вязкости:

а) cm^2/c ; б) m^3/H ; в) $\kappa r/m^3$; г) H/m^2 ; д) $\kappa r c \cdot c/m^2$.

2.42. Какую размерность имеет динамический коэффициент вязкости а) $\text{см}^2/\text{c}$; б) $\text{м}^3/\text{H}$; в) кг/м^3 ; г) H/m^2 ; д) $\text{кгc} \cdot \text{c/m}^2$.

- 2.43. При изменении каких параметров изменяется коэффициент вязкости?
- а) температуры; б) скорости; в) давления; г) плотности; д) расстояния.
- 2.44. Как ведёт себя вязкость капельных жидкостей?
- а) увеличивается с увеличением температуры и уменьшается при увеличении давления;
- б) уменьшается с увеличением температуры и возрастает при увеличении давления;
- в) увеличивается с увеличением скорости и уменьшается при увеличении давления;
- г) уменьшается с увеличением скорости и уменьшается при увеличении давления;
- д) увеличивается с уменьшением температуры и уменьшается при уменьшении давления.
- 2.45. Вязкость жидкости при увеличении температуры:
- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) сначала уменьшается, а затем остается постоянной;
- д) сначала постоянна, а потом увеличивается.
- 2.46. Вязкость жидкости при увеличении давления:
- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) сначала уменьшается, а затем остается постоянной;
- д) сначала постоянна, а потом увеличивается.
- 2.47. Идеальная жидкость это:
- а) вязкость которой постоянна;
- б) вязкость которой равна нулю;
- в) вязкость которой равна единице;
- г) вязкость которой равна $0.01 \text{ cm}^2/\text{c}$;
- д) вязкость которой равна 1 П.
- 2.48. Интенсивность испарения жидкости не зависит от:
- а) от давления;
- б) от ветра;
- в) от температуры;
- г) от объема жидкости;
- д) от скорости движения.

- 2.49. Выбрать правильное суждение:
- а) индекс вязкости это относительная величина, показывающая степень изменения вязкости масла в зависимости от температуры в градусах Цельсия и определяющая пологость кривой кинематической вязкости от температуры;
- б) индекс вязкости это относительная величина, показывающая степень увеличения вязкости масла в зависимости от температуры в градусах Цельсия и определяющая кривизну графика зависимости кинематической вязкости от температуры;
- в) индекс вязкости это абсолютная величина, показывающая степень изменения вязкости масла в зависимости от температуры в градусах Цельсия и определяющая кривизну графика зависимости температуры от кинематической вязкости;
- г) индекс вязкости это разница величин вязкости при разных (фиксированных) температурах, определяющая пологость вязкостно-температурной характеристики;
- д) индекс вязкости это разница температур при разных (фиксированных) величинах вязкости, определяющая пологость вязкостно-температурной характеристики.
- 2.50. Какие параметры не характеризуют воспламеняемость рабочей жидкости?
- а) температура вспышки;
- б) температура застывания;
- в) температура воспламенения;
- г) анилиновая точка;
- д) температура самовоспламенения.
- 2.51. Что означает зольность рабочей жидкости?
- а) содержание золы;

- б) содержание твердых примесей;
- в) содержание железа;
- г) содержание растворимых веществ;
- д) содержание угарного газа.
- 2.52. Влияние температуры на вязкость определяется формулой

a)
$$\mu = \mu_0 \cdot e^{-\beta \cdot (T - T_0)}$$
;

$$δ) μ = μ0 · e^{-β \cdot (To - T)};$$

$$\mathbf{B}) \ \mathbf{v}_t = \mathbf{v}_{50} \cdot \left(\frac{50}{t}\right)^n$$

$$\Gamma$$
) $v = \frac{\mu}{T}$;

- 2.53. Поверхностное натяжение
- а) явление, возникающее на границе соприкосновения жидкости, твердого тела и газа;
- б) самопроизвольный процесс течения жидкости по поверхности твердого тела;
- в) свойство объемов жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой;
- г) является специфическим свойством жидкости и связано с ее молекулярной структурой;
- д) отталкивание молекул поверхностного слоя от молекул внутри жидкости.
- 2.54. От чего зависит коэффициент поверхностного натяжения жидкости?
- а) от рода жидкости, её температуры и наличия в ней примесей;
- б) только от температуры жидкости;
- в) только от рода жидкости и наличия в ней примесей;
- г) от плотности и вязкости жидкости;
- д) нет правильного ответа.
- 2.55. Выделяемый из жидкости газ, и газ, попадающий в рабочую жидкость из окружающей среды, образуют
- а) пену;
- в) эмульсию из газа;

б) пар;

- г) эмульсию из жидкости;
- д) нет правильного ответа.
- 2.56. Выделение воздуха из рабочей жидкости называется
- а) парообразованием;
- б) газообразованием;
- в) пенообразованием;
- г) газовыделение.
- д) нет правильного ответа.
- 2.57. Укажите неверный показатель воспламеняемости?
- а) температура воспламенения;
- б) температура самовоспламенения;
- в) температура плавления;
- г) температура вспышки;
- д) нет правильного ответа.

Лекция №3 Классификация рабочих жидкостей

- 3.1. Какие классификационные признаки не относятся к классификации рабочих жидкостей?
- а) происхождение;
- б) вязкость;
- в) область применения;
- г) условия эксплуатации;
- д) условия хранения.
- 3.2. Выбрать неправильное суждение:
- а) по происхождению рабочие жидкости делят на жидкости на парафиновой основе; синтетические и водосодержащие;
- б) по происхождению рабочие жидкости делят на жидкости на нефтяной основе (масла); синтетические и водосодержащие;
- в) по происхождению рабочие жидкости делят на жидкости на синтетической основе (масла); базовые и водосодержащие;
- г) по происхождению рабочие жидкости делят на жидкие, твердые, газообразные и капельные;
- д) нет правильного ответа.
- 3.3. Какую вязкость имеют маловязкие жидкости?
- а) 4...8 cСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- г) 4...8 Ст;
- д) $4...8 \text{ м}^2/\text{c}.$
- 3.4. Какую вязкость имеют средневязкие жидкости?
- a) 4...8 сСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- г) 10...20 Ст;
- д) $10...20 \text{ м}^2/\text{c}.$
- 3.5. Какую вязкость имеют вязкие жидкости?
- a) 4...8 сСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- г) 25...45 Ст;
- д) $25...45 \text{ м}^2/\text{c}.$

- 3.6. Какие масла не должны быть включены в минимальный ассортимент рабочих жидкостей?
- а) легкое маловязкое минеральное масло на нефтяной основе с особопологой характеристикой вязкости;
- б) минеральное масло на нефтяной основе для разных гидроприводов с достаточно малым ресурсом;
- в) минеральное масло на нефтяной основе для силовых гидросистем, эксплуатирующихся на морозе;
- г) минеральное масло на нефтяной основе для тяжелонагруженных силовых гидросистем с ограниченными утечками и большим ресурсом;
- д) негорючие эмульсии.
- 3.7. Какими свойствами не должна обладать рабочая жидкость?
- а) хорошими смазывающими свойствами по отношению к материалам трущихся пар;
- б) минимальная зависимость вязкости от температуры в требуемом диапазоне;
- в) низкая упругость насыщенных паров и высокая температура кипения;
- г) низкая стоимость и производство в достаточном количестве;
- д) низким модулем упругости.
- 3.8. Какими свойствами должна обладать рабочая жидкость?
- а) хорошими смазывающими свойствами по отношению к материалам трущихся пар;
- б) максимальная зависимость вязкости от температуры в требуемом диапазоне;
- в) низкая упругость насыщенных паров и высокая температура кипения;
- г) низкая стоимость и производство в достаточном количестве;
- д) низким модулем упругости.
- 3.9. Какие условия влияют на выбор марки масла для машиностроения?
- а) температурные;
- б) режим работы;
- в) точность работы;
- г) номинальное давление в гидросистеме;
- д) номинальный расход в гидросистеме.
- 3.10. Какие условия не влияют на выбор марки масла для машиностроения?
- а) температурные;
- б) режим работы;
- в) точность работы;
- г) номинальное давление в гидросистеме;
- д) номинальный расход в гидросистеме.

Лекция №4 Базовые масла

4.1.	Какой	процент	базового	масла	составляет	В	рабочих	жидкостях	на
неф	гяной о	снове?							
a) 25	5- 37 %;)							
б) 5	8- 74 %	•							
в) 83	5- 98 %;	•							

- г) 100 %;
- д) Нет правильного ответа.
- 4.2. Какой процент различных добавок составляет в рабочих жидкостях на нефтяной основе?
- a) 2-15 %;
- б) 15- 25 %;
- в) 85- 98 %;
- r) 100 %;
- д) Нет правильного ответа.
- 4.3. Выбрать правильное суждение:
- а) базовое масло это фракция получаемая при вторичной переработке и очистки отработанных масел;
- б) базовое масло это одна из фракций нефти, имеющая определенную температуру кипения;
- в) базовое масло это фракция получаемая при постоянном смешивании ингредиентов входящих в состав нескольких масел при определённой температуре;
- г) базовое масло это фракция получаемая из присадок, при определённой температуре;
- д) базовое масло это одна из фракций нефти, имеющая определенный тип молекул.
- 4.4. Как называется метод производства базовых масел?
- а) дисциллятный;
- б) фракционный;
- в) прямогонный;
- г) базовый;
- д) углеводородный.
- 4.5. Как называются сырые фракции нефти?
- а) дисцилляты;
- б) масла;
- в) парафины;
- г) углеводороды;
- д) перегонные.

- 4.5. Как называются масла, полученные из сырых фракций нефти?
- а) перегонные;
- б) нефтяные;
- в) парафиновые;
- г) углеводородные;
- д) дисциллятные.
- 4.6. Какие классы углеводов могут водить в состав базового масла:
- а) парафиновые или алкановые углеводороды;
- б) нафтеновые или циклановые углеводороды;
- в) ароматические углеводороды;
- г) парафиновые или циклановые;
- д) нафтеновые или алкановые углеводороды.
- 4.7. Какие классы углеводов не водят в состав базового масла:
- а) парафиновые или алкановые углеводороды;
- б) парафиновые или циклановые;
- в) ароматические углеводороды;
- г) нафтеновые или циклановые углеводороды;
- д) нафтеновые или алкановые углеводороды.
- 4.8. Выбрать правильное суждение:
- а) соотношение между классами углеводородов в базовом масле оценивают по температуре кипения;
- б) соотношение между классами углеводородов в базовом масле оценивают по кислотному числу;
- в) соотношение между классами углеводородов в базовом масле оценивают по анилиновой точке;
- г) соотношение между классами углеводородов в базовом масле оценивают по вязкости масла;
- д) соотношение между классами углеводородов в базовом масле оценивают по плотности масла.
- 4.9. В каких пределах находится анилиновая точка распространенных масел:
- a) 14...33 °C;
- б) 35...45 °С;
- в) 45...65 °С;
- г) 68...90 °C;
- д) 90...125°C.

- 4.10 Выбрать правильное суждение:
- а) анилиновая точка в большей степени влияет на температуру вспышки;
- б) анилиновая точка в большей степени влияет на температуру застывания;
- в) анилиновая точка в большей степени влияет на испаряемость масла;
- г) анилиновая точка в большей степени влияет на смазочные свойства;
- д) анилиновая точка в большей степени влияет на резиновые уплотнения и рукава.

4.11. Выбрать не правильное суждение:

- а) нафтеновые углеводороды являются основной составляющей частью базовых масел;
- б) нафтеновые углеводороды обеспечивают наилучшую вязкостно-температурную характеристику;
- в) нафтеновые углеводороды обеспечивают хорошие смазочные свойства;
- г) нафтеновые углеводороды обеспечивают плохие смазочные свойства;
- д) нафтеновые углеводороды отличаются большей плотностью.

4.12. Выбрать не правильное суждение:

- а) ароматические углеводороды имеют в молекулах бензольные ненасыщенные кольца;
- б) ароматические углеводороды обладают высокой растворяющей способностью;
- в) ароматические углеводороды имеют наименьшую плотность;
- г) ароматические углеводороды имеют плохую вязкостно-температурную характеристику;
- д) ароматические углеводороды имеют неудовлетворительные смазочные свойства.

4.13. Выбрать правильные суждения:

- а) нафтеновые углеводороды являются основной составляющей частью базовых масел;
- б) нафтеновые углеводороды обеспечивают наилучшую вязкостнотемпературную характеристику;
- в) нафтеновые углеводороды обеспечивают хорошие смазочные свойства;
- г) нафтеновые углеводороды обеспечивают плохие смазочные свойства;
- д) нафтеновые углеводороды отличаются большей плотностью.

4.14. Выбрать правильные суждения:

а) ароматические углеводороды имеют в молекулах бензольные ненасыщенные кольца;

- б) ароматические углеводороды обладают высокой растворяющей способностью;
- в) ароматические углеводороды имеют наименьшую плотность;
- г) ароматические углеводороды имеют плохую вязкостно-температурную характеристику;
- д) ароматические углеводороды имеют удовлетворительные смазочные свойства.
- 4.15. Какие свойства рабочей жидкости определяет базовое масло?
- а) температуру воспламенения;
- б) температуру застывания;
- в) испаряемость;
- г) совместимость с материалами уплотнений и покрытий;
- д) вязкость.
- 4.16. Какие свойства рабочей жидкости не зависят от базового масла?
- а) температура воспламенения;
- б) температура застывания;
- в) плотность;
- г) совместимость с материалами уплотнений и покрытий;
- д) вязкость.
- 4.17. Выбрать неправильные суждения:
- а) назначение процесса очистки базовых масел разделение углеводородных компонентов базового масла по типу молекул;
- б) назначение процесса очистки базовых масел разделение углеводородных компонентов базового масла по молекулярной массе;
- в) очистка дисциллятов состоит в удалении нежелательных компонентов: склонных к окислению и обладающих плохой вязкостно-температурной характеристикой соединений;
- г) очистка дисциллятов состоит в удалении нежелательных компонентов: смол и асфальтенов, кристаллизующихся при низких температурах парафинов;
- д) очистка дисциллятов состоит в удалении нежелательных компонентов: несклонных к окислению и обладающих хорошей вязкостнотемпературной характеристикой соединений.

Лекция №5-6 Присадки

- 5.1. Выбрать правильное суждение:
- а) нефтяные базовые масла являются рабочими жидкостями т.к. удовлетворяют всему спектру эксплуатационных требований;
- б) нефтяные базовые масла не являются рабочими жидкостями т.к. не удовлетворяют всему спектру эксплуатационных требований;
- в) нефтяные базовые масла промежуточно являются фракцией рабочей жидкости т.к. отвечают за температурно-вязкостные характеристики;
- г) нефтяные базовые масла не являются фракцией рабочей жидкости т.к. не отвечают за температурно-вязкостные характеристики;
- д) нефтяные базовые масла стоят отдельной группой и не отвечают ни каким требованиям и характеристикам.
- 5.2. На какой фактор не влияет введение присадок в рабочую жидкость?
- а) на износ деталей;
- б) на количество отложений на деталях гидросистем;
- в) на условия эксплуатации;
- г) на надежность и долговечность машин и механизмов;
- д) на плотность рабочей жидкости.
- 5.3. Выбрать правильные суждения:
- а) введение присадок влияет на износ деталей;
- б) введение присадок увеличивает количество отложений на деталях гидросистем;
- в) введение присадок ухудшает условия эксплуатации;
- г) введение присадок повышает надежность и долговечность машин и механизмов;
- д) введение присадок влияет на плотность рабочей жидкости.
- 5.4. Какие требования не относятся к присадкам:
- а) хорошая растворимость в базовом масле;
- б) не стабильность при длительном хранении рабочей жидкости;
- в) отсутствие отрицательного влияния на эксплуатационные свойства рабочих жидкостей, не связанных с функциональным действием вводимой присадки;
- г) отрицательное влияние на эксплуатационные свойства рабочих жидкостей, не связанных с функциональным действием вводимой присадки;
- д) стабильность при длительном хранении рабочей жидкости.
- 5.5. Каким образом присадки связаны с минеральной основой:
- а) при помощи третьего специального склеивающего вещества;
- б) образуют соли;

- в) составляют дисперсные растворы в жидкой основе;
- г) связаны химически;
- д) никак не связаны.
- 5.6. Каких присадок не существует?
- а) вязкостные; г) присадки, предотвращающие свариваемость деталей;
- б) антиокислительные;
- д) стабилизаторы набухания резины;
- в) антивозрастные;
- 5.7. Каких присадок не существует?
- а) вязкостные;

б) прочностные;

в) детергенты;

- г) дисперсанты;
- д) дисцилляты.

- 5.8. Выберите правильное суждение:
- а) вязкостные присадки необходимы для подавления процесса разрушения масла;
- б) вязкостные присадки необходимы для улучшения смазочной способности при граничном или сухом трении;
- в) вязкостные присадки необходимы для увеличения кривизны вязкостнотемпературной характеристики;
- г) вязкостные присадки необходимы для повышении индекса вязкости;
- д) вязкостные присадки необходимы для замедления или предотвращающее течения какой-либо химической реакции.
- 5.9. Выберите не правильное суждение:
- а) чем больше молекулярная масса вязкостной присадки, тем лучше ее загущающая способность;
- б) чем больше молекулярная масса вязкостной присадки, тем больше проявляется необратимое уменьшение вязкости загущенного масла из-за деструкции при механических воздействиях в гидросистемах;
- в) чем больше молекулярная масса вязкостной присадки, тем больше проявляется обратимое уменьшение вязкости при больших градиентах скорости сдвига;
- г) вязкостные присадки представляют собой полимерные соединения с молекулярной массой 3000-30000;
- д) вязкостные присадки необходимы для увеличения кривизны вязкостнотемпературной характеристики.
- 5.10. Какие присадки не относятся к вязкостным?
- а) полиизобутилены;
- б) дитиофосфаты цинка;
- в) виниполы;
- г) полиметакрилаты;
- д) трикрезилфосфаты.

- 5.11. Выберите правильное суждение:
- а) антиокислительные присадки необходимы для подавления процесса коррозии в маслах;
- б) антиокислительные присадки необходимы для улучшения смазочной способности при граничном или сухом трении;
- в) антиокислительные присадки необходимы для снижения температуры застывания масла;
- г) антиокислительные присадки необходимы для увеличения вязкости масла при максимальной рабочей температуре и повышении индекса вязкости;
- д) антиокислительные присадки необходимы для повышения стойкости масел к химическим изменениям, связанными с окислением.
- 5.12. Выберите не правильное суждение:
- а) антиокислительные присадки повышают стойкость масел к химическим изменениям, связанными с окислением;
- б) окислительные процессы в маслах приводят к образованию органических кислот, осадков, смол, развитию коррозии;
- в) окислительные процессы активизируются в присутствии катализаторов некоторых материалов гидросистемы, влаги.
- г) вводимые в масла антиокислительные присадки прерывают цепные реакции окисления за счет вступления в реакцию с молекулами жидкости.
- д) вводимые в масла антиокислительные присадки прерывают цепные реакции автоокисления за счет вступления в реакцию молекул присадки.
- 5.13. Какие присадки не относятся к антиокислительным?
- а) полиизобутилены;
- б) дитиофосфаты цинка;

в) виниполы;

г) полиметакрилаты;

- д) дибутил-н-крезол.
- 5.14. Выберите правильные суждения:
- а) антикоррозионные присадки необходимы для подавления процесса коррозии в маслах;
- б) антикоррозионные присадки необходимы для улучшения смазочной способности при граничном или сухом трении;
- в) антикоррозионные присадки необходимы для снижения температуры застывания масла;
- г) антикоррозионные присадки необходимы для увеличения вязкости масла при максимальной рабочей температуре и повышении индекса вязкости;
- д) антикоррозионные присадки необходимы для замедления или предотвращения течения какой-либо химической реакции.

- 5.15. Выберите не правильное суждение:
- а) глубокоочищенное свежее базовое масло при отсутствии влаги обеспечивает удовлетворительную защиту от коррозии;
- б) глубокоочищенное свежее базовое масло в присутствии влаги обеспечивает удовлетворительную защиту от коррозии;
- в) при эксплуатации в масло всегда проникает вода и создаются условия для электрохимической коррозии;
- г) ускоряют коррозию продукты старения масла низкомолекулярные органические кислоты и их соли, продукты разложения присадок и др.
- д) наиболее распространены в рабочих жидкостях присадки экранирующего типа.
- 5.16. Исключите лишние группы антикоррозионных присадок:
- а) экранирующего действия;
- б) ионного действия;

в) анодного действия;

- г) катодного действия;
- д) электрохимического действия.
- 5.17. Какие присадки не относятся к антиокоррозионным?
- а) полиизобутилены;

б) дитиофосфаты цинка;

в) алкенилянтарная кислота;

- г) полиметакрилаты;
- д) продукты окисления петролатума.
- 5.18. Выберите правильное суждение:
- а) противоизносные присадки необходимы для подавления процесса коррозии в маслах;
- б) противоизносные присадки необходимы для улучшения смазочной способности при граничном или сухом трении;
- в) противоизносные присадки необходимы для снижения температуры застывания масла;
- г) противоизносные присадки необходимы для увеличения вязкости масла при максимальной рабочей температуре и повышении индекса вязкости;
- д) противоизносные присадки необходимы для замедления или предотвращения течения какой-либо химической реакции.
- 5.19. Какие присадки не относятся к противоизностным?
- а) трикрезилфосфат;
- б) трикселинилфосфат;
- в) алкенилянтарная кислота;
- г) полиметакрилаты;
- д) дитиофосфаты цинка.

- 5.20. Выберите правильное суждение:
- а) противозадирные присадки предотвращают образование задиров и сваривание деталей под воздействием высоких давлений и повышенных температур;
- б) противозадирные присадки предотвращают образование задиров и сваривание деталей под воздействием больших расходов и повышенных скоростей;
- в) противозадирные присадки обеспечивают сохранение масляной пленки при высоких контактных давлениях;
- г) противозадирные присадки не обеспечивают сохранение масляной пленки при высоких контактных давлениях;
- д) в качестве противозадирных присадок используются сульфинированные жиры, хлорированные углеводороды.
- 5.21. Какие присадки не относятся к противозадирным?
- а) сульфинированные жиры;
- б) алкенилянтарная кислота;
- в) хлорированные углеводороды;
- г) свинцовые соли органических кислот;
- д) полиметилсилоксан.
- 5.22. Выберите правильное суждение:
- а) депрессорные присадки необходимы для подавления процесса коррозии в маслах;
- б) депрессорные присадки необходимы для улучшения смазочной способности при граничном или сухом трении;
- в) депрессорные присадки необходимы для снижения температуры застывания масла;
- г) депрессорные присадки необходимы для увеличения вязкости масла при максимальной рабочей температуре и повышении индекса вязкости;
- д) депрессорные присадки необходимы для замедления или предотвращения течения какой-либо химической реакции.
- 5.23. Для чего необходимы противопенные присадки:
- а) противопенные присадки необходимы для снижения поверхностного натяжения масла;
- б) противопенные присадки необходимы для улучшения совместимости масла с резиновыми уплотнениями и рукавами;
- в) противопенные присадки необходимы для умения или предотвращения выпадение осадков при работе машин, механизмов при повышенных температурах;

- г) противопенные присадки необходимы для предотвращения образование шлама, смешивания масла с водой и выпадения осадков в масле при относительно низких температурах;
- д) противопенные присадки необходимы для замедления или предотвращения течения какой-либо химической реакции.
- 5.24. Какие присадки необходимы для уменьшения или предотвращения выпадения осадков при повышенных температурах?
- а) депрессорные;
- б) дисперсанты;
- в) детергенты;
- г) дисцилляты;
- д) эмульгаторы.
- 5.25. Какие присадки необходимы для снижения температуры застывания масла?
- а) депрессорные;
- б) дисперсанты;
- в) детергенты;
- г) дисцилляты;
- д) эмульгаторы.
- 5.26. Какие присадки предотвращают образование шлама при низких температурах?
- а) депрессорные;
- б) дисперсанты;
- в) детергенты;
- г) дисцилляты;
- д) эмульгаторы.
- 5.27. Какие присадки вводятся в масло для снижения поверхностного натяжения масла?
- а) модификаторы трения;

- б) эмульгаторы;
- в) стабилизаторы набухания резины;
- г) противопенные;

- д) противоизносные.
- 5.28. Для чего необходимы стабилизаторы набухания резины:
- а) для снижения поверхностного натяжения масла;
- б) улучшения совместимости масла с резиновыми уплотнениями и рукавами;
- в) уменьшения или предотвращения выпадения осадков при работе машин, механизмов при повышенных температурах;
- г) предотвращения образование шлама, смешивания масла с водой и выпадения осадков в масле при относительно низких температурах;
- д) замедления или предотвращения течения какой-либо химической реакции: коррозии металла, окисления топлива и смазочных масел и др.

- 5.29. Для чего необходимы детергенты:
- а) для снижения поверхностного натяжения масла;
- б) для улучшения совместимости масла с резиновыми уплотнениями и рукавами;
- в) для уменьшения или предотвращения выпадение осадков при работе машин, механизмов при повышенных температурах;
- г) для предотвращения образование шлама, смешивания масла с водой и выпадения осадков в масле при относительно низких температурах;
- д) замедления или предотвращения течения какой-либо химической реакции: коррозии металла, окисления топлива и смазочных масел и др.
- 5.30. Для чего необходимы дисперсанты:
- а) для снижения поверхностного натяжения масла;
- б) для улучшения совместимости масла с резиновыми уплотнениями и рукавами;
- в) для уменьшения или предотвращения выпадение осадков при работе машин, механизмов при повышенных температурах;
- г) для предотвращения образование шлама, смешивания масла с водой и выпадения осадков в масле при относительно низких температурах;
- д) замедления или предотвращения течения какой-либо химической реакции: коррозии металла, окисления топлива и смазочных масел и др.
- 5.31. Выбрать правильное суждение:
- а) эмульсия это вещество, входящее в состав всех типов рабочих жидкостей;
- б) эмульсия это система различных жидкостей, состоящая из грубодисперсных жидкостей;
- в) эмульсия это система различных жидкостей, состоящая из смешиваемых жидкостей;
- г) эмульсия это грубодисперсная система, состоящая из несмешиваемых жидкостей;
- д) эмульсия это грубодисперсная система, состоящая из смешиваемых жидкостей.
- 5.32. Какие присадки вводятся в масло для улучшения совместимости масла с резиновыми уплотнениями?
- а) модификаторы трения;
- б) эмульгаторы;
- в) стабилизаторы набухания резины;
- г) противопенные;
- д) противоизносные.

- 5.33. Как влияют антисептики на эмульсии:
- а) повышают долговечность эмульсий;
- б) предотвращают выделение пахучих веществ;
- в) предотвращают развитие микроорганизмов в смазочно-охлаждающих жидкостях;
- г) разделяют эмульсию на составные части;
- д) не влияют.
- 5.34. Выберите неверное суждение:
- а) эмульгаторы повышают стойкость эмульсии воды в масле и масла в воде;
- б) эмульгаторы используются при изготовлении водосодержащих рабочих жидкостей, смазочно-охлаждающих жидкостей;
- в) эмульгаторы вещества, обеспечивающие создание эмульсий из смешивающихся жидкостей;
- г) эмульгаторы вещества, обеспечивающие создание эмульсий из несмешивающихся жидкостей;
- д) основные типы эмульсий: прямые и обратные.

Лекция №7. Индустриальные масла

7.1.. Выберете правильное суждение:

а) индустриальные масла, предназначенные для смазывания промышленного оборудования выделены в самостоятельную группу;
б) индустриальные масла, предназначенные для смазывания промышлен-
ного оборудования не выделены в самостоятельную группу; в) индустриальные масла, предназначенные для смазывания промышленного оборудования частично выделены в самостоятельную группу, но только масла необходимые для смазки гидравлических систем; г) индустриальные масла, предназначенные для смазывания промышленного оборудования частично выделены в самостоятельную группу, но
только масла необходимые для смазки тяжело нагруженных узлов; д) индустриальные масла, предназначенные для смазывания промышленного оборудования частично выделены в самостоятельную группу, но только масла необходимые для смазки легко нагруженных узлов.
7.2. На сколько классов делятся индустриальные масла в зависимости от величины кинематической вязкости:
а) 18; б) 12; в) 10; г) 5; д) 19.
7.3. На сколько подгрупп делятся индустриальные масла по эксплуатационным свойствам:
а) 18; б) 12; в) 10; г) 5; д) 19.
7.4. К какой подгруппе по эксплуатационным свойствам относится индустриальное масло в состав которого входят нефтяные масла без присадок: а) A; б) B; в) C; г) Д; д) Е.
7.5. К какой подгруппе по эксплуатационным свойствам относится индустриальное масло в состав которого входят нефтяные масла только с антиокислительными и антикоррозионными присадками: а) A; б) B; в) C; г) Д; д) Е.
7.6. К какой подгруппе по эксплуатационным свойствам относится индустриальное масло в состав которого входят нефтяные масла с антиокислительными, адгезионными, противоизносными, противозадирными и противоскачковыми присадками: а) A; б) B; в) C; г) Д; д) E.
7.7. К какой подгруппе по эксплуатационным свойствам относится индустриальное масло в состав которого входят нефтяные масла только с

		и, антик присадками		ими, пр	отивоизносными	И
a) A;	-	-	г) Д;	д) Е.		
стриальнантиоки присадка	ное масло слительным ами:	в состав ко и, антик	оторого вхо	дят нефт ими и	ствам относится и яные масла толы противоизносн	ко с
			, , ,	ŕ		
7.9. С ка ных мас		разработана	единая сис	тема обоз	вначения индустри	аль-
а) с цели стриальнб) с цели	ью унифика ных масел д ью системат	ля специаль	ного оборуд	ования;	ия производства и ания в различных	·
пользова	ью химмото ания в разли	чных гидро	приводах;		ования вероятного	
•	=	_			язкости и расширо	ения
д) с цел	ью унифика	ции, улучц	_	гва и расі	оборудования; ширения производ вания.	ства
7.10. Ско	олько групп	знаков вхо	тит в обозна	чение ин)	цустриальных масс	ел:
a) 3;					правильного отве	
7.11. Пеј	рвая группа	в обозначен	иии индустр	иальных м	масел обозначается	1 :
а) цифро		-) 1 TT				
в) букво	й А;	г) букво	йИ;	д) бук	вой М.	
				риальных	масел обозначает:	
		ской вязкос				
		сой вязкости	•		••	
			уппам) по н			•
	длежность н равильного (масел по эк	сплуатаці	ионным свойствам	,
7.13. Tpe	етья группа	в обозначен	ии индустрі	иальных м	пасел обозначает:	
_		ской вязкос	• •			

б) класс динамической вязкости;

в) принадлежность к группе (группам) по назначению;

г) принадлежность к подгруппе масел по эксплуатационным свойствам)

7.14. Четвёртая группа в обозначении индустриальных масел обозначает: а) класс кинематической вязкости; б) класс динамической вязкости; в) принадлежность к группе (группам) по назначению; г) принадлежность к подгруппе масел по эксплуатационным свойствам) д) нет правильного ответа.)
7.15. На какие группы делят индустриальные масла в зависимости от назначения: а) Л, Г, Н и Т; б) F, H, G и C; в) А, Б, С, Д и Е; г) А, Б, Г и Д; д) А, Б, В, Г и Д.
7.16. К какой группе по назначению относятся индустриальные масла, применяемые в гидравлических системах: а) H; б) Л; в) Γ ; Γ
7.17. К какой группе по назначению относятся индустриальные масла, применяемые в легко нагруженных узлах: а) H; б) Π ; в) Γ ; г) T ; д) A .
7.18. К какой группе по назначению относятся индустриальные масла, применяемые для направляющих скольжения: а) H; б) Л; в) Γ ; Γ
5.19. К какой группе по назначению относятся индустриальные масла, применяемые в тяжело нагруженных узлах: а) H; б) Π ; в) Γ ; Γ
7.20. Какая рабочая жидкость соответствует обозначению И-Г-А-32: а) индустриальное масло предназначено для гидравлической системы, с антиокислительными и антикоррозионными присадками, 32 - го класса вязкости; б) индустриальное масло предназначено для тяжело нагруженных узлов, с присадками, 32 - го класса вязкости; в) индустриальное масло предназначаются для длительного хранения гидроаппаратуры, легко нагруженных узлов с тонкостью фильтрации 32 - го класса; г) индустриальное масло предназначено для гидравлической системы, без присадок, 32 - го класса вязкости; д) нет правильного ответа.

д) нет правильного ответа.)

- 7.21. Какая рабочая жидкость соответствует обозначению И-Т-Д-680(Мо):
- а) индустриальное масло предназначено для гидравлической системы, с антиокислительными и антикоррозионными присадками легко нагруженных узлов, 680 го класса вязкости;
- б) индустриальное масло предназначено для тяжело нагруженных узлов, с антиокислительными, антикоррозионными, противоизносными и противозадирными присадками, 680 го класса вязкости;
- в) индустриальное масло предназначаются для направляющего скольжения, с антиокислительными, адгезионными, противоизносными, противозадирными и противоскачковыми присадками с содержанием молибдена (Мо) 680 мгр/л рабочей жидкости;
- г) индустриальное масло предназначено для гидравлической системы, без присадок, с содержанием молибдена (Мо) 680 мгр/л рабочей жидкости; д) нет правильного ответа.

7.22. Какая рабочая жидкость соответствует обозначению И-ЛГ-А-15:

- а) моторное масло предназначено для двигателей внутреннего сгорания, с антиокислительными и антикоррозионными присадками легко нагруженных узлов, содержание присадок 15%;
- б) индустриальное масло предназначено для легко нагруженных узлов гидравлических систем, без присадок, 15 го класса вязкости;
- в) индустриальное масло предназначаются для легко направленого скольжения гидроапаратов, с содержанием 15% антиокислительных, противоизносных, противозадирных присадок;
- г) трансмиссионное масло предназначено для гидравлических систем, с антиокислительными и антикоррозионными присадками, 15 го класса вязкости:
- д) нет правильного ответа.

7.23. Какая рабочая жидкость соответствует обозначению И-Л-С-3:

- а) индустриальное масло предназначено легко нагруженных узлов, с антиокислительными, антикоррозионными и противоизносными присадками, 3 го класса вязкости;
- б) индустриальное масло предназначено для тяжело нагруженных узлов, с содержанием 3% антиокислительных, антикоррозионных, противоизносных и противозадирных присадкок;
- в) индустриальное масло предназначаются для направляющего скольжения, с антиокислительными и адгезионными, 3 го класса вязкости;
- г) индустриальное масло предназначено легко нагруженных узлов, с антиокислительными, антикоррозионными, адгезионными и противоизносными присадками, 3 го класса вязкости;
- д) нет правильного ответа.

- 7.24. Какая рабочая жидкость соответствует обозначению И-ГТ-А-100:
- а) индустриальное масло предназначено гидравлических узлов, при температуре не выше 100°C с антиокислительными, антикоррозионными и противоизносными присадками;
- б) индустриальное масло предназначено для гидравлически тяжело нагруженных узлов, с содержанием 100мгр антиокислительных, антикоррозионных, противоизносных и противозадирных присадкок на литр рабочей жидкости;
- в) индустриальное масло предназначаются для направляющего скольжения, без присадок, 100 го класса вязкости;
- г) индустриальное масло предназначено для трущихся узлов со 100% загрузкой, за время всего цикла работы, содержит антиокислительные и противоизносными присадки;
- д) нет правильного ответа.
- 7.25. Какая рабочая жидкость соответствует обозначению И-Т-В-460:
- а) пластинчатая смазка общего назначений для гидросистем с плотностью рабочей жидкости выше чем 460 кг/m^3 ;
- б) минеральное масло с противоизносными присадками предназначено легко нагруженных узлов;
- в) индустриальное масло предназначено для тяжело нагруженных узлов содержащее антиокислительные и антикоррозионне присадки 460 го класса вязкости;
- г) индустриальное масло предназначено для трущихся узлов содержащее противоизносные, противозадирные и противоскачковые присадки кинематическая вязкость которого не привышает $46 \text{ мm}^2/\text{c}$ (cCт).
- д) нет правильного ответа.
- 7.26. Какая рабочая жидкость соответствует обозначению И-Л-Д-1000:
- а) индустриальное масло предназначено для трущихся узлов расчитанных на рабочее давление не привышающее 1000 атм;
- б) индустриальная присадка предназначенная для гидравлических систем, содержит антиокислительные и антикоррозионные присадки 1000 го класса вязкости.
- в) индустриальное масло предназначено для динамически легко нагруженных узлов, работающих при температуре не выше 1000°С с антиокислительными, антикоррозионными и противоизносными присадками.
- г) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, антикоррозионные, противоизносные и противозадирные присадки, 1000 го класса вязкости.
- д) нет правильного ответа.

- 7.27. Какая рабочая жидкость соответствует обозначению И-ГН-Е-68:
- а) индустриальное масло предназначенное для гидравлических систем направляющего скольжения содержащее антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 68 го класса вязкости.
- б) индустриальная присадка предназначенная для нагруженных гидравлических систем, содержит противозадирные и противоскачковые присадки кинематическая вязкость которой не привышает 68 мм²/с (сСт).
- в) индустриальное масло предназначенное для гидравлических систем не допускающее привышение 68% различных присадок.
- г) индустриальное масло предназначенное гидроприводов нереверсивного движения, примеси присадок в котором не превышают 68% мгр/л.
- д) нет правильного ответа.
- 7.28. Какая рабочая жидкость соответствует обозначению И-Т-С-320:
- а) индустриальное масло предназначенное для легко нагруженных узлов не содержит присадок с антиокислительными и антикоррозионными свойствами, 320 го класса вязкости.
- б) индустриальное масло предназначенное для гидравлических систем при повышеном трении, содержащее атистастческие присадки, давление системы не должно привышать 320 атм(32МПа).
- в) индустриальное масло предназначенное для тяжело нагруженных узлов содержит антиокислительные, антикоррозионные и противоизносные присадки, 320 го класса вязкости.
- г) индустриальное масло предназначенное для гидравлических систем направляющего скольжения, с антиокислительными и адгезионными, 320 го класса вязкости.
- д) нет правильного ответа.
- 7.29. Какая рабочая жидкость соответствует обозначению И-Т-Д-220:
- а) индустриальное масло предназначено легко нагруженных узлов, с антиокислительными, антикоррозионными и противоизносными присадками, 220 го класса вязкости.
- б) индустриальное масло предназначено для тяжело нагруженных узлов, с содержанием 220 мгр/л антиокислительных, антикоррозионных, противоизносных и противозадирных присадкок.
- в) индустриальное масло предназначаются для направляющего скольжения, с антиокислительными и адгезионными, рассчитанное на давление не превышающее 220 атм (22МПа).
- г) индустриальное масло предназначено тяжело нагруженных узлов, содержащее антиокислительные, антикоррозионные, противоизносные и противозадирные присадки, 220 го класса вязкости.

- д) нет правильного ответа.
- 7.30. Какая рабочая жидкость соответствует обозначению И-Л-А-10:
- а) индустриальное масло предназначено легко нагруженных узлов, не содержит присадок, 10 го класса вязкости.
- б) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, адгезионные, противоизносные присадки, 10 го класса вязкости.
- в) индустриальное масло предназначено легко нагруженных узлов содержит адгезионные, противоизносные и противозадирные присадки, 10 го класса вязкости.
- г) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 10 го класса вязкости. д) нет правильного ответа.
- 7.31. Какая рабочая жидкость соответствует обозначению И-Н-Е-100:
- а) индустриальное масло предназначено для направляющего скольжения содержит антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 100 го класса вязкости.
- б) индустриальное масло предназначено не нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых не привышает 100° С
- в) индустриальное масло предназначено не для направляющего скольжения содержит антиокислительные, адгезионные, противоизносные присадки, 100 го класса вязкости.
- г) индустриальное масло предназначено для нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых пивышае $100^{\rm o}{\rm C}$
- д) нет правильного ответа.
- 7.32. Какая рабочая жидкость соответствует обозначению И-Л-С-22:
- а) индустриальное масло предназначено легко нагруженных узлов, не содержит присадок, 22 го класса вязкости.
- б) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, адгезионные, противоизносные присадки, 22 го класса вязкости.
- в) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, антикоррозионные и противоизносные присадки, 22 го класса вязкости.

г) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 22 - го класса вязкости. д) нет правильного ответа.

7.33. Какая рабочая жидкость соответствует обозначению И-Т-С-100:

- а) индустриальная масло предназначенное для гидравлических систем направляющего скольжения, с антиокислительными и адгезионными, 100 го класса вязкости.
- б) индустриальное масло предназначенное для тяжело нагруженных узлов содержит антиокислительные, антикоррозионные и противоизносные присадки, 100 го класса вязкости.
- в) индустриальная присадка предназначенная для гидравлических систем, содержит антиокислительные и антикоррозионные присадки 100 го класса вязкости.
- г) индустриальное масло предназначаются для легко направленого скольжения гидроапаратов, с содержанием $100 \mathrm{мгp/л}$ антиокислительных, противоизносных, противозадирных присадок.
- д) нет правильного ответа.

7.34. Какая рабочая жидкость соответствует обозначению И-Г-С-32:

- а) индустриальная масло предназначенное для гидравлических систем содержащее антиокислительные, антикоррозионные и противоизносные присадки 32 го класса вязкости.
- б) индустриальное масло предназначено для тяжело нагруженных узлов, с содержанием 32 мгр/л антиокислительных, антикоррозионных, противоизносных и противозадирных присадкок.
- в) индустриальная присадка предназначенная для гидравлических систем, содержит антиокислительные и антикоррозионные присадки 32 го класса вязкости.
- г) индустриальное масло предназначаются для легко направленого скольжения гидроприводов, с содержанием 32мгр/л антиокислительных, противоизносных, противозадирных присадок.
- д) нет правильного ответа.

7.35. Какая рабочая жидкость соответствует обозначению И-Т-Д-32:

- а) индустриальная масло предназначенное для гидравлических систем содержащее антиокислительные, антикоррозионные и противоизносные присадки 32 го класса вязкости.
- б) индустриальное масло предназначено для тяжело нагруженных узлов, с содержанием 32 мгр/л антиокислительных, антикоррозионных, противоизносных и противозадирных присадкок.

- в) индустриальная присадка предназначенная для гидравлических систем, содержит антиокислительные и антикоррозионные присадки 32 го класса вязкости.
- г) индустриальное масло предназначаются для легко направленого скольжения гидроприводов, с содержанием 32мгр/л антиокислительных, противоизносных, противозадирных присадок.
- д) нет правильного ответа.
- 7.36. Какая рабочая жидкость соответствует обозначению И-Л-С-22:
- а) индустриальное масло предназначено для трущихся узлов расчитанных на рабочее давление не привышающее 22МПа.
- б) индустриальная присадка предназначенная для гидравлических систем, содержит антиокислительные и антикоррозионные присадки 22 го класса вязкости.
- в) индустриальное масло предназначено для динамически легко нагруженных узлов, работающих при температуре не ниже 22°C с антиокислительными, антикоррозионными и противоизносными присадками.
- г) индустриальное масло предназначено легко нагруженных узлов содержит антиокислительные, антикоррозионные, противоизносные и противозадирные присадки, 22 го класса вязкости.
- д) нет правильного ответа.
- 7.37. Какая рабочая жидкость соответствует обозначению И-Т-Д-150:
- а) индустриальное масло предназначено для направляющего скольжения содержит антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 150 го класса вязкости.
- б) индустриальное масло предназначено не нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых привышает 150° С
- в) индустриальное масло предназначено не для тяжело нагруженных узлов содержит антиокислительные, антикоррозионные, противоизносные и противозадирные присадки, 150 го класса вязкости.
- г) индустриальное масло предназначено для нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых пивышае $150^{\circ}\mathrm{C}$
- д) нет правильного ответа.
- 7.38. Какая рабочая жидкость соответствует обозначению И-Т-С-150:
- а) индустриальное масло предназначено для направляющего скольжения содержит антиокислительные, адгезионные, противоизносные, противозадирные и противоскачковые присадки, 150 го класса вязкости.

- б) индустриальное масло предназначено не нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых привышает 150° С
- в) индустриальное масло предназначено не для тяжело нагруженных узлов содержит антиокислительные, антикоррозионные и противоизносные и присадки, 150 го класса вязкости.
- г) индустриальное масло предназначено для нагруженных гидросистем содержит адгезионные и противоизносные присадки , температура вспышки которых пивышае $150^{\circ}\mathrm{C}$
- д) нет правильного ответа.
- 7.39. Какой рекомендуемой области применения соответствует подгруппа Д индустриальных масел:
- а) Машины и механизмы промышленного оборудования, условия работы которых не предъявляют особых требований к антиокислительным и антикоррозионным свойствам масел.
- б) Машины и механизмы промышленного оборудования, условия работы которых предъявляют повышенные требования к антиокислительным и антикоррозионным свойствам масел
- в) Машины и механизмы промышленного оборудования, условия работы которых предъявляют повышенные требования к антиокислительным, антикоррозионным противоизносным и противозадирным свойствам масел
- г) Машины и механизмы промышленного оборудования, условия работы которых предъявляют повышенные требования к антиокислительным, антикоррозионным и противоизносным свойствам масел
- д) Машины и механизмы промышленного оборудования, условия работы которых предъявляют повышенные требования к антиокислительным, адгезионным, противоизносным, противозадирным и противоскачковым свойствам масел
- 7.40. Марка какого индустриального масла по ГОСТ 17479.4—87 соответствует марке И-20А ранее принятой в нормативно-технической документации:
- а) И-ЛГ-А-15
- б) И-Г-А-32
- в) И-Г-А-46

- г) И-Л-А-10
- д) И-Л-А-7

Лекция №8. Масла для двигателей внутреннего сгорания

- 8.1. Какая рабочая жидкость соответствует обозначению М-6₃/10В:
- а) моторное масло предназначено для систем повышенной выносливости, с антиокислительными и антикоррозионными присадками, 10 го класса вязкости.
- б) моторное масло предназначено для тяжело нагруженных узлов, с присадками, 10 го класса вязкости.
- в) моторное масло всесезонное, универсальное для среднефорсированных дизелей и бензиновых двигателей с содержанием присадок 7-10%.
- г) моторное масло предназначено для гидравлической системы, без присадок, 32 го класса вязкости.
- д) нет правильного ответа.
- 8.2. Какая рабочая жидкость соответствует обозначению М-14Д (цл20):
- а) моторное масло для высокофорсированных дизелей с наддувом, работающих в тяжелых эксплуатационных условиях, (цл20) применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.
- б) моторное масло для среднефорсированных бензиновых двигателей, работающие в условиях, которые способствуют окислению масла и образованию отложений всех видов, (цл20) применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.
- в) моторное масло для нефорсированных бензиновых двигателей и дизелей, (цл20) применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.
- г) моторное масло для малофорсированных дизелей, (цл20) применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.
- д) нет правильного ответа.
- 8.3. Какая рабочая жидкость соответствует обозначению М-5₃/10-В2Г1:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей и высокофорсированных бензиновых двигателей.
- б) моторное масло всесезонное, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей.
- в) моторное масло зимнее, универсальное для малофорсированных дизелей и высокофорсированных бензиновых двигателей.
- г) моторное масло, универсальное для нефорсированных дизелей и высокофорсированных бензиновых двигателей.
- д) нет правильного ответа.

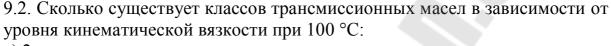
- 8.4. Какая рабочая жидкость соответствует обозначению М-4₃/8-А:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 15-22%.
- б) моторное масло всесезонное, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 7-10%.
- в) моторное масло зимнее, универсальное для малофорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 5,5-6%.
- г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 3,5%.
- д) нет правильного ответа.
- 8.5. Какая рабочая жидкость соответствует обозначению М-6₁/16-Г:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей без надува и высокофорсированных бензиновых двигателей с содержанием присадок 7-12%.
- б) моторное масло всесезонное, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 7-10%.
- в) моторное масло зимнее, универсальное для малофорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 5,5-6%.
- г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 3,5%.
- д) нет правильного ответа.
- 8.6. Какая рабочая жидкость соответствует обозначению М-62/16-Г:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей без надува и высокофорсированных бензиновых двигателей с содержанием присадок 7-12%.
- б) моторное масло всесезонное, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 7-10%.
- в) моторное масло зимнее, универсальное для малофорсированных дизелей и малафорсированных бензиновых двигателей с содержанием присадок 5,5-6%.
- г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 3,5%.
- д) нет правильного ответа.

- 8.7. Какая рабочая жидкость соответствует обозначению М-20-Е2:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей без надува и высокофорсированных бензиновых двигателей с содержанием присадок 8-14%.
- б) моторное масло всесезонное, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей с содержанием присадок 7-10%.
- в) моторное масло зимнее, универсальное для малофорсированных дизелей и малафорсированных бензиновых двигателей с содержанием присадок 7-12%.
- г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 9%.
- д) нет правильного ответа.
- 8.8. Какая рабочая жидкость соответствует обозначению М-24-Е2:
- а) моторное масло универсальное для высокофорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел A1 и A2, отличаются повышенной диспергирующей способностью, лучшими противоизносными свойствами.
- б) моторное масло всесезонное, высокофорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел Г1 и Г2, отличаются повышенной диспергирующей способностью, лучшими противоизносными свойствами.
- в) моторное масло для высокофорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел Д1 и Д2, отличаются повышенной диспергирующей способностью, лучшими противоизносными свойствами.
- г) моторное масло, для высокофорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел Д1 и Д2, отличаются повышенной диспергирующей способностью, лучшими противоизносными свойствами.
- д) нет правильного ответа.
- 8.9. Какая рабочая жидкость соответствует обозначению М-8- Б1:
- а) моторное масло для нефорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел A2, отличаются лучшими противоизносными свойствами.
- б) моторное масло малофорсированных бензиновых двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.

- в) моторное масло малофорсированных дизельных двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников
- г) моторное масло высокофорсированных бензиновых и дизельных двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- д) нет правильного ответа.
- 8.10. Какая рабочая жидкость соответствует обозначению М-16- Б2:
- а) моторное масло для нефорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел A2, отличаются лучшими противоизносными свойствами.
- б) моторное масло малофорсированных бензиновых двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- в) моторное масло малофорсированных дизельных двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- г) моторное масло высокофорсированных бензиновых и дизельных двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- д) нет правильного ответа.
- 8.11. Какая рабочая жидкость соответствует обозначению М-16- Д:
- а) моторное масло для нефорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел Д.
- б) моторное масло малофорсированных бензиновых двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- в) моторное масло среднефорсированных дизельных двигателей с наддувом, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- г) моторное масло универсальное для высокофорсированных бензиновых и дизельных с наддувом двигателей, работающие в тяжелых эксплуатационных условиях или когда применяемое топливо требует использования масел с высокой нейтрализующей способностью.
- д) нет правильного ответа.

- 8.12. Какая рабочая жидкость соответствует обозначению М-16- В:
- а) моторное масло для нефорсированных бензиновых двигателей и дизелей, работающие в эксплуатационных условиях более тяжелых чем группы масел С.
- б) моторное масло малофорсированных бензиновых двигателей, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников.
- в) моторное масло среднефорсированных дизельных двигателей с наддувом, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников, масла этой группы на тракторах и автомобилях не применяются.
- г) моторное масло высокофорсированных бензиновых и дизельных с наддувом двигателей, работающие в тяжелых эксплуатационных условиях или когда применяемое топливо требует использования масел с высокой нейтрализующей способностью более тяжелых чем группы масел В. д) нет правильного ответа.
- A) mer inputation of the fun
- 8.13. Какая рабочая жидкость соответствует обозначению $M-5_2/12-B$:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей и высокофорсированных бензиновых двигателей.
- б) моторное масло зимнее, универсальное для среднефорсированных дизелей и высокофорсированных бензиновых двигателей.
- в) моторное масло всесезонное, универсальное для малофорсированных дизелей и высокофорсированных бензиновых двигателей.
- г) моторное масло, универсальное для нефорсированных дизелей и высокофорсированных бензиновых двигателей.
- д) нет правильного ответа.
- 8.14. Какая рабочая жидкость соответствует обозначению М-5₃/10- Б:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей и бензиновых двигателей с содержанием присадок 7-12,5%.
- б) моторное масло зимнее, универсальное для среднефорсированных дизелей и бензиновых двигателей с содержанием присадок 7-10%.
- в) моторное масло всесезонное, универсальное для малофорсированных дизелей и бензиновых двигателей с содержанием присадок 5,5-6%.
- г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 3,5%.
- д) нет правильного ответа.
- 8.15. Какая рабочая жидкость соответствует обозначению М-5₃/10- Е:
- а) моторное масло летнее, универсальное для высокофорсированных дизелей без надува и бензиновых двигателей с содержанием присадок 7-12,5%.

б) моторное масло зимнее, универсальное для среднефорсированных дизелей без надува и бензиновых двигателей с содержанием присадок 7-10%. в) моторное масло всесезонное, универсальное для малофорсированных дизелей без надува и бензиновых двигателей с содержанием присадок 3-						
10%. г) моторное масло, универсальное для нефорсированных дизелей без надува и бензиновых двигателей с содержанием присадок 3,5%. д) нет правильного ответа.						
8.16. Какая рабочая жидкость соответствует обозначению М-5 ₁ /14- Г: а) моторное масло летнее, универсальное для высокофорсированных дизелей и бензиновых двигателей с содержанием присадок 7-12,5%. б) моторное масло зимнее, универсальное для среднефорсированных дизелей и бензиновых двигателей с содержанием присадок 7-10%. в) моторное масло всесезонное, универсальное для малофорсированных						
дизелей и бензиновых двигателей с содержанием присадок 5,5-6%. г) моторное масло, универсальное для нефорсированных дизелей и бензиновых двигателей с содержанием присадок 3,5%. д) нет правильного ответа.						
8.17. Какой а) А.	группе соот б) Б.	гветствует (в) В.	содержание г) Г.	присадок равное д) нет правильн		
8.18. Какой а) А.	группе соот б) Б.	гветствует (в) В.	содержание г) Г.	присадок равное д) нет правильн		
8.19. Какой а) А.	группе соот б) Б.	гветствует (в) В.	содержание г) Г.	присадок равное д) нет правильн		
8.20. Какой а) Б.	группе соот б) Г.	гветствует (в) В.	содержание г) Д.	присадок равное д) нет правильн		
8.21. Какой 1) Е.	группе соот 2) Б.	гветствует (3) С.	содержание 4) Д.	присадок равное 5) Нет правилы	•	
8.22. Какой 1) Е.	группе соот 2) Б.	гветствует (3) С.	содержание 4) Д.	присадок равное 5) Нет правилы		
8.23. Какой а) А.	группе соот б) Б.	гветствует (в) В.	содержание г) Г.	присадок равное д) нет правильн		


и дизели: a) A.	б) Б.	в) В.	г) Г.	д) нет правильного ответа.
8.25. Како гатели и д		соответству	ет высокоф	орсированные бензиновые дви
		в) В.	г) Г.	д) нет правильного ответа.
8.26. Како тели и диз		соответству	ет малофор	осированные бензиновые двига
		в) В.	г) Г.	д) нет правильного ответа.
8.27. Како тели:	ой группе с	соответству	ет малофор	осированные бензиновые двига
a) A1.	б) Б2.	в) В1.	г) Г2.	д) нет правильного ответа.
8.28. Како ли:	ой группе с	оответству	ет малофор	сированные дизельные двигате
a) A1.	б) Б2.	в) В1.	г) Г2.	д) нет правильного ответа.
	ой группе с цвигатели:	соответству	ет среднефо	орсированные дизельные и бен
a) A.	б) Б.	в) В.	г) Г.	д) нет правильного ответа.
8.30. Како тели:	ой группе с	соответству	ет среднефо	орсированные дизельные двига
а) Д2.	б) Б1.	в) В2.	г) C1.	д) нет правильного ответа.
вом:				рорсированные дизели с надду
а) Д2.	б) Б1.	в) В2.	г) C1.	д) нет правильного ответа.
8.32. Како тели:	ой группе с	соответству	ет малофор	осированные бензиновые двига
а) Д2.	б) Б1.	в) В2.	г) С 1.	д) нет правильного ответа.
8.33. Какс ва:	ой группе с	оответствуе	ет высокофо	орсированные дизели без надду
а) Д2.	б) Б1.	в) Г2.	г) Е1.	д) нет правильного ответа.
2 24 Brig	рать правил	вное сужде	ение:	

б) универсальные моторные масла обозначают индексом возле буквы. в) универсальные моторные масла обозначают буквой без индекса или двумя разными буквами с разными индексами. г) универсальные моторные масла обозначают буквой У. д) нет правильного ответа. 8.35. На сколько групп делят моторные масла по назначению и эксплуатационным свойствам: б) 4. г) 8. a) 2. в) 6. д) нет правильного ответа. 8.36. Какие требования предъявляются к моторным маслам: а) низкие термическая и термоокислительная стабильности; б) высокие моющая, диспергирующе-стабилизирующая способности по отношению к различным нерастворимым загрязнениям, обеспечивающие чистоту деталей двигателя в) достаточные противоизносные свойства, г) отсутствие коррозионного воздействия на материалы деталей двигателя как в процессе работы, так и при длительных перерывах; д) ускоренное старение, не способность противостоять внешним воздействиям с минимальным ухудшением свойств; 8.37. Какие требования предъявляются к моторным маслам: а) пологость вязкостно-температурной характеристики, б) большая вспениваемость при высокой и низкой температурах; в) надежное смазывание в экстремальных условиях при высоких нагрузках и температуре окружающей среды; г) не совместимость с материалами уплотнений, совместимость с катализаторами системы нейтрализации отработавших газов; д) высокая стабильность при транспортировании и хранении в регламентированных условиях; 8.38.На какие группы делят моторные масла в зависимости от температурного диапазона применения: а) летние б) зимние в) универсальные г) всесезриные д) северные 8.39.На какие группы не делят моторные масла по функциональному назначению: а) рабочие б) консервационные в) рабоче-консервационные г) резервные

д) консервацнонно-рабочие

Лекция №9. Масла для трансмиссий и передач. Энергетические масла

9.1. Сколько существует групп трансмиссионных мас	сел в зависимости от
эксплуатационных свойств и возможных областей при	именения масла:
a) 2.	
б) 3.	
в) 4.	
r) 5. д) 6.	
д) 6.	

- a) 2.
- б) 3.
- в) 4.
- г) 5.
- д) 6.
- 9.3. Какой группе трансмиссионных масел соответствуют минеральные масла без присадок:
- a) 1.
- б) 2.
- в) 3.
- г) 4.
- д) 5.
- 9.4. Выбрать неправильное суждение:
- а) трансмиссионные масла работают в режимах высоких скоростей скольжения, давлений и широком диапазоне температур;
- б) пусковые свойства и длительная работоспособность трансмиссионных масел должны обеспечиваться в интервале температур от -60 до +150 °C;
- в) для обеспечения надежной и длительной работы агрегатов трансмиссий смазочные масла должны обладать высокой антиокислительной стабильностью;
- г) для трансмиссионных продуктов в качестве базовой основы используются минеральные, полусинтетические или полностью синтетические масла;
- д) все свойства трансмиссионного масла могут быть обеспечены только базовой основой.

r) 4. д) 5.
9.6. Какой группе трансмиссионных масел соответствуют минеральные масла с противозадирными присадками умеренной эффективности: а) 1. б) 2. в) 3. г) 4. д) 5.
9.7. Какой группе трансмиссионных масел соответствуют минеральные масла с противозадирными присадками высокой эффективности: a) 1. б) 2. в) 3. г) 4. д) 5.
9.8. Какой группе трансмиссионных масел соответствуют минеральные масла с противозадирными присадками высокой эффективности и многофункционального действия, а также универсальные масла: a) 1. б) 2. в) 3. г) 4. д) 5.
9.9. Какой области применения трансмиссионных масел по ГОСТ 17479.2-85 соответствует 3 группа: а) Цилиндрические, конические и червячные передачи, работающие при
контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме до 90 °C.
б) Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме до 150 °C. в) Цилиндрические, спирально-конические и Гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме до 150 °C.
г) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях до 2100 МПа и температуре масла в объеме до 130°.
д) Цилиндрические, конические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме до 150 °C.

9.5. Какой группе трансмиссионных масел соответствуют минеральные

масла с противоизносными присадками:

a) 1.б) 2.в) 3.

- 9.10. Какой области применения трансмиссионных масел по ГОСТ 17479.2-85 соответствует 1 группа:
- а) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме до 90 °C.
- б) Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме до 150 °C.
- в) Цилиндрические, спирально-конические и Гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме до $150\,^{\circ}$ C.
- г) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях до $2100~\rm M\Pi a$ и температуре масла в объеме до 130°
- д) Цилиндрические, конические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме до 150 °C.
- 9.11. Какой области применения трансмиссионных масел по ГОСТ 17479.2-85 соответствует 2 группа:
- а) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме до 90 °C.
- б) Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме до 150 °C.
- в) Цилиндрические, спирально-конические и Гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме до $150\,^{\circ}$ C.
- г) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях до 2100 МПа и температуре масла в объеме до 130°.
- д) Цилиндрические, конические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме до 150 °C.
- 9.12. Какой области применения трансмиссионных масел по ГОСТ 17479.2-85 соответствует 4 группа:
- а) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме до 90 $^{\circ}$ C.
- б) Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме до 150 °C.

- в) Цилиндрические, спирально-конические и Гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме до 150 °C.
- г) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях до $2100~\rm M\Pi a$ и температуре масла в объеме до 130° .
- д) Цилиндрические, конические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме до 150 °C.
- 9.13. Какой области применения трансмиссионных масел по ГОСТ 17479.2-85 соответствует 5 группа:
- а) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях от 900 до 1600 МПа и температуре масла в объеме до 90 °C.
- б) Гипоидные передачи, работающие с ударными нагрузками при контактных напряжениях выше 3000 МПа и температуре масла в объеме до 150 °C.
- в) Цилиндрические, спирально-конические и Гипоидные передачи, работающие при контактных напряжениях до 3000 МПа и температуре масла в объеме до 150 °C.
- г) Цилиндрические, конические и червячные передачи, работающие при контактных напряжениях до $2100~\rm M\Pi a$ и температуре масла в объеме до 130° .
- д) Цилиндрические, конические, спирально-конические и гипоидные передачи, работающие при контактных напряжениях до 2500 МПа и температуре масла в объеме до $150\,^{\circ}$ C.
- 9.14. Как в маркировке при использовании русских букв будут обозначаться трансмиссионные масла:
- a) T.
- б) TP.
- в) TM.
- r) TC
- д) нет правильного ответа.
- 7.15. Что обозначает вторая цифра в маркировке трансмиссионных масел при использовании русских букв:
- а) Класс вязкости масла.
- б) Группу по уровню эксплуатационных свойств.
- в) Процент содержания примесей в масле.
- г) Принадлежность масла к группе контактных напряжений.
- д) Принадлежность масла к группе температурных интервалов.

- 9.16. Что обозначает первая цифра в маркировке трансмиссионных масел при использовании русских букв:
- а) Класс вязкости масла.
- б) Группу по уровню эксплуатационных свойств.
- в) Процент содержания примесей в масле.
- г) Принадлежность масла к группе контактных напряжений.
- д) Принадлежность масла к группе температурных интервалов.
- 9.17. Какая рабочая жидкость соответствует обозначению ТМ-1-18:
- а) Трансмиссионное масло, относящейся к 18 группе эксплуатационных свойств, с 1 классом вязкости масла.
- б) Трансмиссионное масло, относящейся к 1 группе эксплуатационных свойств, с 18 классом вязкости масла.
- в) Трансмиссионное масло, относящейся к 1 группе эксплуатационных свойств и 18 группе контактных напряжений.
- г) Трансмиссионное масло, относящейся к 18 группе эксплуатационных свойств и 1 группе контактных напряжений.
- д) нет правильного ответа.
- 9.18. Какая рабочая жидкость соответствует обозначению ТМ-2-34:
- а) Трансмиссионное масло, относящейся к 2 группе эксплуатационных свойств, с 34 классом вязкости масла.
- б) Трансмиссионное масло, относящейся к 3 и 4 группе эксплуатационных свойств, с 2 классом вязкости масла.
- в) Трансмиссионное масло, относящейся к 2 группе эксплуатационных свойств и температура масла недолжна превышать 34°C, что не допустить изменения его свойств.
- г) Трансмиссионное масло, относящейся к 3и4 группе эксплуатационных свойств и 2 группе контактных напряжений.
- д) Нет правильного ответа.
- 9.19. Какая рабочая жидкость соответствует обозначению ТМ-5-18:
- а) Трансмиссионное масло, относящейся к 18 группе эксплуатационных свойств, с 5 классом вязкости масла.
- б) Трансмиссионное масло, относящейся к 5 группе эксплуатационных свойств, с 18 классом вязкости масла.
- в) Трансмиссионное масло, относящейся к 5 группе эксплуатационных свойств и 18 группе контактных напряжений.
- г) Трансмиссионное масло, относящейся к 18 группе эксплуатационных свойств и 5 группе контактных напряжений.
- д) нет правильного ответа.

- 9.20. Какая рабочая жидкость соответствует обозначению ТМ-5-34:
- а) Трансмиссионное масло, относящейся к 5 группе эксплуатационных свойств, с 34 классом вязкости масла.
- б) Трансмиссионное масло, относящейся к 3 и 4 группе эксплуатационных свойств, с 5 классом вязкости масла.
- в) Трансмиссионное масло, относящейся к 5 группе эксплуатационных свойств и температура масла недолжна превышать 34°C, что не допустить изменения его свойств.
- г) Трансмиссионное масло, относящейся к 3 и 4 группе эксплуатационных свойств и 5 группе контактных напряжений.
- д) нет правильного ответа.

Лекция №10. Синтетические масла

10.1. Выбрать правильное определение:

- а) диэфиры это жидкости на основе сложных эфиров фосфорной кислоты обладают повышенной огнестойкостью к воспламенению и хорошей смазочной способностью;
- б) диэфиры это самостоятельный класс огнестойких жидкостей рабочих жидкостей, пожаробезопастность которых обеспечивается присутствием в них воды.
- в) диэфиры это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- г) диэфиры это негорючие полимеры, в основе которых лежит силоксановая группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.
- д) нет правильного ответа.

10.2. Выбрать правильное определение:

- а) силоксаны и полисилоксаны это жидкости на основе сложных эфиров фосфорной кислоты обладают повышенной огнестойкостью к воспламенению и хорошей смазочной способностью.
- б) силоксаны и полисилоксаны это самостоятельный класс огнестойких жидкостей рабочих жидкостей, пожаробезопастность которых обеспечивается присутствием в них воды.
- в) силоксаны и полисилоксаны это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- г) силоксаны и полисилоксаны это негорючие полимеры, в основе которых лежит группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.
- д) нет правильного ответа.

10.3. Выбрать правильное определение:

- а) фосфаты это жидкости на основе сложных эфиров фосфорной кислоты обладают повышенной огнестойкостью к воспламенению и хорошей смазочной способностью.
- б) фосфаты это самостоятельный класс огнестойких жидкостей рабочих жидкостей, пожаробезопастность которых обеспечивается присутствием в них воды.
- в) фосфаты это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- г) фосфаты это негорючие полимеры, в основе которых лежит группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.

д) нет правильного ответа.

10.4. Выбрать правильное определение:

- а) эмульсии это жидкости на основе сложных эфиров фосфорной кислоты обладают повышенной огнестойкостью к воспламенению и хорошей смазочной способностью.
- б) эмульсии это амостоятельный класс огнестойких жидкостей рабочих жидкостей, пожаробезопастность которых обеспечивается присутствием в них воды.
- в) эмульсии это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- г) эмульсии это негорючие полимеры, в основе которых лежит группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.
- д) нет правильного ответа.

10.5. Выберите правильные суждения:

- а) Для гидроприводов создан широкий ассортимент синтетических негорючих жидкостей, которые работоспособны при высоких температурах.
- б) Синтетические рабочие жидкости не универсальны
- в) Синтетические рабочие жидкости универсальны
- г) Синтетические рабочие жидкости имеют не ограниченные сырьевые ресурсы.
- д) Синтетические рабочие жидкости имеют более низкие смазывающие свойства

10.6. Выберите не правильные суждения:

- а) Для гидроприводов создан широкий ассортимент синтетических негорючих жидкостей, которые работоспособны при высоких температурах.
- б) Синтетические рабочие жидкости не универсальны
- в) Синтетические рабочие жидкости универсальны
- г) Синтетические рабочие жидкости имеют не ограниченные сырьевые ресурсы.
- д) Синтетические рабочие жидкости имеют более низкие смазывающие свойства

10.7. Выберите правильные суждения:

- а) Для гидроприводов создан широкий ассортимент синтетических негорючих жидкостей, которые не работоспособны при высоких температурах.
- б) Синтетические рабочие жидкости не универсальны
- в) Синтетические рабочие жидкости имеют высокую стоимость
- г) Синтетические рабочие жидкости имеют ограниченные сырьевые ресурсы.

- д) Синтетические рабочие жидкости имеют наилучшие смазывающие свойства
- 10.8. Выберите неправильные суждения:
- а) Для гидроприводов создан широкий ассортимент синтетических негорючих жидкостей, которые не работоспособны при высоких температурах.
- б) Синтетические рабочие жидкости не универсальны
- в) Синтетические рабочие жидкости имеют высокую стоимость
- г) Синтетические рабочие жидкости имеют ограниченные сырьевые ресурсы.
- д) Синтетические рабочие жидкости имеют наилучшие смазывающие свойства
- 10.9. Какие синтетические рабочие жидкости не используют в гидросистемах:
- а) диэфиры;

б) силоксаны и полисилоксаны;

в) фосфаты;

- г) водородсодержащие жидкости;
- д) водосодержащие жидкости.
- 10.10. Какие синтетические рабочие жидкости используют в гидросистемах:
- а) диэфиры;

б) хроморганические жидкости;

в) фосфаты;

- г) водородсодержащие жидкости;
- д) водосодержащие жидкости.
- 10.11. Какие синтетические рабочие жидкости не используют в гидросистемах:
- а) фторорганические жидкости;
- б) хроморганические жидкости;
- в) хлорорганические жидкости;
- г) водородсодержащие жидкости;
- д) водосодержащие жидкости.
- 10.12. Какие синтетические рабочие жидкости используют в гидросистемах:
- а) фторорганические жидкости;
- б) хроморганические жидкости;

в) диэфиры;

- г) водородсодержащие жидкости;
- д) водосодержащие жидкости.
- 10.13. Выберите правильные суждения:
- а) Диэфиры это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- б) Диэфиры представляют собой маслянистые жидкости с плохой смазывающей способностью
- в) Диэфиры представляют собой маслянистые жидкости с удовлетворительной вязкостно-температурной характеристикой

- г) Диэфиры представляют собой маслянистые жидкости с большой испаряемостью и высокой температурой вспышки.
- д) Диэфиры недостаточно устойчивы к окислению.

10.14. Выберите не правильные суждения:

- а) Диэфиры это жидкости на основе сложных эфиров двухосновных кислот с первичными или многоатомными спиртами.
- б) Диэфиры представляют собой маслянистые жидкости с плохой смазывающей способностью
- в) Диэфиры представляют собой маслянистые жидкости с удовлетворительной вязкостно-температурной характеристикой
- г) Диэфиры представляют собой маслянистые жидкости с большой испаряемостью и высокой температурой вспышки.
- д) Диэфиры недостаточно устойчивы к окислению. неправильное суждение

10.15. Выберите правильные суждения:

- а) При использовании рабочих жидкостей на основе диэфиров необходимо применение уплотнений из фтороорганических каучуков.
- б) При использовании рабочих жидкостей на основе диэфиров необходимо применение уплотнений из нитрильных каучуков
- в) Диэфиры хорошо совместимы с рукавами и уплотнениями из нитрильных каучуков
- г) Диэфиры плохо совместимы с рукавами и уплотнениями из нитрильных каучуков
- д) Диэфиры плохо совместимы с медью, цинком, кадмием и свинцом.

10.16. Выберите не правильные суждения:

- а) При использовании рабочих жидкостей на основе диэфиров необходимо применение уплотнений из фтороорганических каучуков.
- б) При использовании рабочих жидкостей на основе диэфиров необходимо применение уплотнений из нитрильных каучуков
- в) Диэфиры хорошо совместимы с рукавами и уплотнениями из нитрильных каучуков
- г) Диэфиры плохо совместимы с рукавами и уплотнениями из нитрильных каучуков
- д) Диэфиры плохо совместимы с медью, цинком, кадмием и свинцом.

10.17. Выберите правильные суждения:

а) Полисилоксаны (силиконы) — негорючие полимеры, в основе которых лежит силоксановая группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.

- б) Силоксаны имеют высокую температуру застывания и наименее пологую вязкостно-температурную характеристику из всех рабочих жидкостей;
- в) Силоксаны разлагаются при температурах выше 100° С.
- г) Нитрильные резины в уплотнениях при работе с силоксанами не используются, поскольку ресурс таких уплотнений существенно уменьшается иза растворения.
- д) Силоксаны часто применяют в качестве антикоррозионных присадок к минеральным маслам, а также с целью улучшения вязкостнотемпературных характеристик (до 20 30%).

10.18. Выберите не правильные суждения:

- а) Полисилоксаны (силиконы) негорючие полимеры, в основе которых лежит силоксановая группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.
- б) Силоксаны имеют высокую температуру застывания и наименее пологую вязкостно-температурную характеристику из всех рабочих жидкостей;
- в) Силоксаны разлагаются при температурах выше 100° С.
- г) Нитрильные резины в уплотнениях при работе с силоксанами не используются, поскольку ресурс таких уплотнений существенно уменьшается изза растворения.
- д) Силоксаны часто применяют в качестве антикоррозионных присадок к минеральным маслам, а также с целью улучшения вязкостнотемпературных характеристик (до 20 30%).

10.19. Выберите правильные суждения:

- а) Полисилоксаны (силиконы) горючие полимеры, в основе которых лежит силоксановая группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.
- б) По сравнению с минеральными маслами силиконы имеют на 30% меньшие силы поверхностного натяжения и большую сжимаемость.
- в) Силоксаны разлагаются при температурах выше 200° С.
- г) Добавление минерального масла к силикону ухудшает его смазывающие свойства.
- д) Силоксаны часто применяют в качестве противопенных присадок к минеральным маслам, а также с целью улучшения вязкостно-температурных характеристик (до 20 30%).

10.20. Выберите не правильные суждения:

а) Полисилоксаны (силиконы) — горючие полимеры, в основе которых лежит силоксановая группа с присоединенными органическими радикалами, образующими полиметил-, полиэтил- и полифенилсилоксаны.

- б) По сравнению с минеральными маслами силиконы имеют на 30% меньшие силы поверхностного натяжения и большую сжимаемость.
- в) Силоксаны разлагаются при температурах выше 200° С.
- г) Добавление минерального масла к силикону ухудшает его смазывающие свойства.
- д) Силоксаны часто применяют в качестве противопенных присадок к минеральным маслам, а также с целью улучшения вязкостно-температурных характеристик (до 20 30%).

Лекция №11. Пластичные смазки

11.1. Выбрать правильное суждение:

- а) пластичные смазки представляют собой коллоидную систему с относительно крупными по сравнению с молекулами газов и обычных жидкостей частицами (0,001-0,1 мкм)], состоящей только из жидкой основы загустителя.
- б) пластичные смазки представляют собой коллоидную систему с относительно крупными по сравнению с молекулами газов и обычных жидкостей частицами $(0,001-0,1\,\text{мкм})$], состоящей только из жидкой основы присадок.
- в) пластичные смазки представляют собой топографическую систему с относительно крупными по сравнению с молекулами газов и обычных жидкостей частицами (0,001—0,1 мкм)], состоящую из жидкой основы загустителя и присадок.
- г) пластичные смазки представляют собой коллоидную систему с относительно крупными по сравнению с молекулами газов и обычных жидкостей частицами $(0,001-0,1\,\text{мкм})$], состоящую из жидкой основы загустителя и присадок.
- д) нет правильного ответа.

11.2. Выбрать правильное суждение:

- а) Смазки состоят из жидкой основы (дисперсионной среды), твердого загустителя (дисперсной фазы) и различных добавок.
- б) Смазки состоят из жидкой основы (дисперсионной среды) и твердого загустителя (дисперсной фазы).
- в) Смазки состоят только из жидкой основы (дисперсионной среды).
- г) Смазки состоят из жидкой основы (дисперсионной среды) и различных добавок.
- д) нет правильного ответа.
- 11.3. На сколько групп разделяют по составу пластинчатые смазки:
- a) 3.
- б) 4.
- в) 6.
- г) 7.
- д) нет правильного ответа.
- 11.4. Какие бывают смазки по консистенции:
- а) жидкие;
- б) твердые;
- в) полужидкие;
- г) полутвердые;
- д) пластичные.

а) жидкие;	б) твердые;					
в) полужидкие;	г) полутвердые;	д) пласти	чные.			
11.6. На какие группы делят смазки по составу:						
а) Неорганические смазки. 6) Углеводородные смазки.						
в) Мыльные смазки.		г) Органически	е смазки.			
д) Дисперсионные см	азки.					
11.7 10						
11.7. Какая группы не	-					
а) Неорганические см	азки.	б) Углеводород				
в) Мыльные смазки.		г) Органические смазки.				
д) Дисперсионные см	азки.					
11 0 Varura Erraram -						
11.8. Какие бывают п	ластичные смазки	в зависимости о	т типа дисперсион-			
ной среды:	6\ L					
· ·	а) Нефтяные. б) Несинтетические.					
в) Дисперсные.	r) B(одоотталкивающ	ие.			
д) Синтетические.						
11.9. Каких не бывает	г ппастицных смаз	ок в зависимости	и от типа писпе р си -			
онной среды:	. IIIIacin-iiibix emas	ок в зависимости	гот типа диспереи-			
а) Нефтяные.	б) Несинт	етические				
в) Дисперсные.						
в) Дисперсные. г) Водоотталкивающие. д) Синтетические.						
д) сиптети псекие.						
11.10. На какие виды	делят пластичны	е смазки в завис	имости от области			
применения в соответ						
а) Антифрикционные						
в) Канатные.	_	ительные.	д) Приборные.			
11.11. Каких пластичных смазок не бывает в зависимости от области при-						
менения в соответств			•			
а) Антифрикционные		вационные.				
в) Канатные.	г) Уплотни		д) Приборные.			
	,		, .			
11.12. Выбрать не правильное суждение:						
а) Основное назначение смазок - увеличение износа поверхностей трения						
для продления срока службы деталей машин и механизмов.						
б) В отдельных случаях смазки ускоряют износ, создавая условия для за-						
дира, заедания и заклинивания поверхностей трения.						
в) Смазки препятствуют проникновению к поверхностям трения агрессивных						

жидкостей, газов и паров, а также абразивных частиц (пыли, грязи и т.п.)

11.5. Какие не бывают смазки по консистенции:

- г) Почти все смазки выполняют защитные функции, предотвращая коррозию металлических поверхностей.
- д) Благодаря антифрикционным свойствам смазки существенно увеличивают энергетические "затраты" на трение, что позволяет снизить потери мощности машин и механизмов.

11.13. Выбрать правильное суждение:

- а) Основное назначение смазок уменьшение износа поверхностей трения для продления срока службы деталей машин и механизмов.
- б) В отдельных случаях смазки упорядочивают износ, предотвращая задир, заедание и заклинивание поверхностей трения.
- в) Смазки препятствуют проникновению к поверхностям трения агрессивных жидкостей, газов и паров, а также абразивных частиц (пыли, грязи и т.п.)
- г) Почти все смазки не выполняют защитные функции, предотвращая коррозию металлических поверхностей.
- д) Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры специальные применяют консервационные смазки.

11.14. Выбрать не правильное суждение:

- а) Основное назначение смазок уменьшение износа поверхностей трения для продления срока службы деталей машин и механизмов.
- б) В отдельных случаях смазки упорядочивают износ, предотвращая задир, заедание и заклинивание поверхностей трения.
- в) Смазки препятствуют проникновению к поверхностям трения агрессивных жидкостей, газов и паров, а также абразивных частиц (пыли, грязи и т.п.)
- г) Почти все смазки не выполняют защитные функции, предотвращая коррозию металлических поверхностей.
- д) Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры специальные применяют консервационные смазки.

11.15. Из каких частей состоят пластичные смазки:

- а) жидкая основа, твердый загуститель и различные добавки.
- б) дисперсионная среда, дисперсная фаза и различные добавки.
- в) твердая основа, жидкий загуститель и различные добавки.
- г) жидкая основа, твердая основа, присадки
- д) жидкий загуститель, твердый загуститель, присадки

11.16. Из каких частей не состоят пластичные смазки:

- а) жидкая основа, твердый загуститель и различные добавки.
- б) дисперсионная среда, дисперсная фаза и различные добавки.

- в) твердая основа, жидкий загуститель и различные добавки.
- г) жидкая основа, твердая основа, присадки
- д) жидкий загуститель, твердый загуститель, присадки
- 11.17. Какие жидкости применяют в качестве жидкой основы пластичных смазок:
- а) нефтяные масла

- б) синтетические масла
- в) растительные масла
- г) кремнийорганические жидкости
- д) вазелиновые масла
- 11.18. Какие жидкости не применяют в качестве жидкой основы пластичных смазок:
- а) приборные масла

- б) синтетические масла
- в) растительные масла
- г) кремнийорганические жидкости
- д) вазелиновые масла
- 11.19. На какие подгруппы делятся антифрикционные смазки в зависимости от области применения:
- а) Общего назначений для обычных температур
- б) Широко специализированные
- в) Многоцелевые
- г) Термостойкие
- д) Низкотемпературные
- 11.20. На какие подгруппы делятся уплотнительные смазки в зависимости от области применения:
- а) Арматурные
- б) Резьбовые
- в) Вакуумные
- г) Канатные
- д) Приработочные пасты

Лекция №12 Классификация гидроприводов по условиям эксплуатации

- 12.1. На какие группы не делят гидроприводы в зависимости от условий эксплуатации?
- а) промышленные;
- б) полевые;
- в) мобильные;
- г) периодического применения;
- д) стационарные.
- 12.2. По какому признаку гидроприводы делят на промышленные, полевые, специальные и т.д.?
- а) по месту установки;
- б) по условиям работы;
- в) по условиям эксплуатации;
- г) по выполняемым функциям;
- д) по климатическому исполнению.

12.3. Выбрать правильное суждение:

- а) промышленные гидроприводы используются в самых различных условиях эксплуатации, более всего в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.
- б) промышленные гидроприводы работают в закрытых отапливаемых помещениях, обычно на промышленных предприятиях и кораблях;
- в) промышленные гидроприводы должны характеризоваться постоянной готовностью к действию, кратковременными периодами работы, часто на форсированных режимах, и длительными стоянками без использования;
- г) промышленные гидроприводы работают в закрытых не отапливаемых помещениях, обычно на стационарных полевых сооружениях и кораблях; д) нет правильного ответа.

12.4. Выбрать правильное суждение:

- а) полевые гидроприводы используются в самых различных условиях эксплуатации, более всего в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.
- б) полевые гидроприводы работают в закрытых отапливаемых помещениях, обычно на промышленных предприятиях и кораблях;
- в) полевые гидроприводы должны характеризоваться постоянной готовностью к действию, кратковременными периодами работы, часто на форсированных режимах, и длительными стоянками без использования.

- г) полевые гидроприводы работают в закрытых не отапливаемых помещениях, в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.;
- д) нет правильного ответа.

12.5. Выбрать правильное суждение:

- а) гидроприводы периодического применения используются в самых различных условиях эксплуатации, более всего в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.;
- б) гидроприводы периодического применения работают в закрытых отапливаемых помещениях, обычно на промышленных предприятиях и кораблях;
- в) гидроприводы периодического применения должны характеризоваться постоянной готовностью к действию, кратковременными периодами работы, часто на форсированных режимах, и длительными стоянками без использования.
- г) гидроприводы периодического применения должны работать в закрытых не отапливаемых помещениях, в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.;
- д) нет правильного ответа.

12.6. Выбрать правильное суждение:

- а) гидроприводы специального применения используются в самых различных условиях эксплуатации, более всего в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.
- б) гидроприводы специального применения работают в закрытых отапливаемых помещениях, обычно на промышленных предприятиях и кораблях;
- в) гидроприводы специального применения должны характеризоваться постоянной готовностью к действию, кратковременными периодами работы, часто на форсированных режимах, и длительными стоянками без использования.
- г) гидроприводы специального применения должны работать в закрытых не отапливаемых помещениях, в мобильных машинах, палубных корабельных установках, стационарных полевых сооружениях и т. д.;
- д) гидроприводы специального применения используются в условиях эксплуатации существенно отличающихся от всех остальных.
- 12.7. В каких климатических зонах не используются полевые гидроприволы:
- а) в умеренной климатической зоне;
- б) в субарктической климатической зоне;

- в) в тропическом сухом климате;
- г) в тропическом влажном климате;
- д) в арктическом климате.
- 12.8. Какие классификационные признаки не относятся к классификации рабочих жидкостей?
- а) происхождение;
- б) вязкость;
- в) область применения;
- г) условия эксплуатации;
- д) условия хранения.
- 12.9. Выбрать неправильное суждение:
- а) по происхождению рабочие жидкости делят на жидкости на парафиновой основе; синтетические и водосодержащие;
- б) по происхождению рабочие жидкости делят на жидкости на нефтяной основе (масла); синтетические и водосодержащие;
- в) по происхождению рабочие жидкости делят на жидкости на синтетической основе (масла); базовые и водосодержащие;
- г) по происхождению рабочие жидкости делят на жидкие, твердые, газообразные и капельные;
- д) нет правильного ответа.
- 12.10. Какую вязкость имеют маловязкие жидкости?
- a) 4...8 сСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- г) 4...8 Ст;
- д) $4...8 \text{ м}^2/\text{c}.$
- 12.11. Какую вязкость имеют средневязкие жидкости?
- a) 4...8 сСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- r) 10...20 Ст;
- д) $10...20 \text{ м}^2/\text{c}.$
- 12.12. Какую вязкость имеют вязкие жидкости?
- a) 4...8 сСт;
- б) 10...20 сСт;
- в) 25...45 сСт;
- г) 25...45 Ст;
- д) $25...45 \text{ м}^2/\text{c}.$

- 12.13. Какие масла не должны быть включены в минимальный ассортимент рабочих жидкостей?
- а) легкое маловязкое минеральное масло на нефтяной основе с особопологой характеристикой вязкости;
- б) минеральное масло на нефтяной основе для разных гидроприводов с достаточно малым ресурсом;
- в) минеральное масло на нефтяной основе для силовых гидросистем, эксплуатирующихся на морозе;
- г) минеральное масло на нефтяной основе для тяжелонагруженных силовых гидросистем с ограниченными утечками и большим ресурсом;
- д) негорючие эмульсии.
- 12.14. Какими свойствами не должна обладать рабочая жидкость?
- а) хорошими смазывающими свойствами по отношению к материалам трущихся пар;
- б) минимальная зависимость вязкости от температуры в требуемом диапазоне;
- в) низкая упругость насыщенных паров и высокая температура кипения;
- г) низкая стоимость и производство в достаточном количестве;
- д) низким модулем упругости.
- 12.15. Какими свойствами должна обладать рабочая жидкость?
- а) хорошими смазывающими свойствами по отношению к материалам трущихся пар;
- б) максимальная зависимость вязкости от температуры в требуемом диапазоне;
- в) низкая упругость насыщенных паров и высокая температура кипения;
- г) низкая стоимость и производство в достаточном количестве;
- д) низким модулем упругости.
- 12.16. Какие условия влияют на выбор марки масла для машиностроения?
- а) температурные;
- б) режим работы;
- в) точность работы;
- г) номинальное давление в гидросистеме;
- д) номинальный расход в гидросистеме.
- 12.17. Какие условия не влияют на выбор марки масла для машиностроения?
- а) температурные;
- б) режим работы;
- в) точность работы;
- г) номинальное давление в гидросистеме;
- д) номинальный расход в гидросистеме.

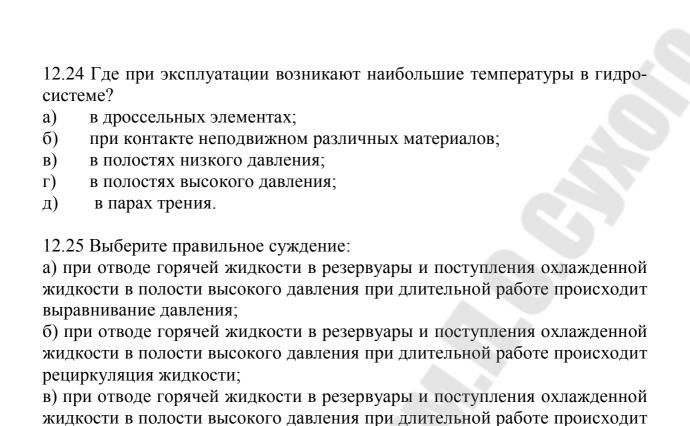
- 12.18 Что изучает наука «Химмотология»
- а) рабочие жидкости, уплотнения, смазки и топлива;
- б) рабочие жидкости, смазочные материалы, топлива;
- в) процессы в элементах механизмов, связанных с рабочими жидкостями, смазочными материалами;
- г) уплотнения, методы их производства и внедрения в рабочий процесс;
- д) эксплуатацию рабочих жидкостей и уплотнений.

12.19. Выбрать правильное определение понятия «химмотология»:

- а) это свойства и качество рабочих и специальных жидкостей, а также смазочных материалов, топлив, необходимые для механизмов в которых нужна жидкость.
- б) это способность рабочих и специальных жидкостей, а также смазочных материалов, топлив, и др. жидкостей изучать процессы проходящих в элементах механизмов, связанных с этими жидкостями; разрабатывать научные основы требований к качеству, принципам создания и правилам эксплуатации рабочих жидкостей.
- в) это наука изучающая явления связанные с не рациональным использованем топлив, смазочных материалов, рабочих и специальных жидкостей, изучающая губительные факторы связанных с этими жидкостями; разрабатывающая научные основы требований не к качеству, а к принципам создания и правилам эксплуатации рабочих жидкостей.
- г) это наука изучившая явления связанные с не рациональным использованием топлив, смазочных материалов, рабочих и специальных жидкостей, имеющая неоспоримые доказательства о губительных факторах связанных с этими жидкостями при использовании в механизмах.
- д) это наука о свойствах, качестве и рациональном использовании топлив, смазочных материалов, рабочих и специальных жидкостей, изучающая процессы в элементах механизмов, связанных с этими жидкостями; разрабатываются научные основы требований к качеству, принципам создания и правилам эксплуатации рабочих жидкостей.
- 12.20 Какие задачи решаются в результате химмотологического анализа?
- а) выбор рабочей жидкости исходя из обеспечения функционирования гидросистемы, работоспособности основных пар трения и совместимости материалов;
- б) расчет параметров, необходимых для последующего прогнозирования сроков эксплуатации рабочей жидкости на основании сроков ее старения.
- в) выбор рабочей жидкости исходя из обеспечения правил хранения гидросистемы, неработоспособности основных пар трения и несовместимости материалов;

- г) расчет сроков эксплуатации рабочей жидкости, необходимых для последующего прогнозирования параметров на основании сроков ее старения.
- д) расчет сроков старения рабочей жидкости, необходимых для последующего прогнозирования параметров на основании сроков ее эксплуатации.

12.21 Выберите правильные суждения:


- а) оценочный химмотологический анализ рассматривает условия работы гидросистемы в течение первого часа эксплуатации;
- б) оценочный химмотологический анализ рассматривает анализ структуры гидросистемы, выделение характерных машин и устройств, определяющих ее работоспособность и наиболее влияющих на рабочую жидкость; анализ условий работы элементов этих машин и устройств;
- в) оценочный химмотологический анализ рассматривает определение уровня тепловых и механических воздействий на рабочую жидкость во время эксплуатации;
- г) оценочный химмотологический анализ рассматривает анализ контактирующих материалов и их совместимость с рабочей жидкостью.
- д) оценочный химмотологический анализ рассматривает анализ не контактирующих материалов и их несовместимость с рабочей жидкостью.

12.22 Выберите не правильные суждения:

- а) оценочный химмотологический анализ рассматривает условия работы гидросистемы в течение первого часа эксплуатации;
- б) оценочный химмотологический анализ рассматривает анализ структуры гидросистемы, выделение характерных машин и устройств, определяющих ее работоспособность и наиболее влияющих на рабочую жидкость; анализ условий работы элементов этих машин и устройств;
- в) оценочный химмотологический анализ рассматривает определение уровня тепловых и механических воздействий на рабочую жидкость во время эксплуатации;
- г) оценочный химмотологический анализ рассматривает анализ контактирующих материалов и их совместимость с рабочей жидкостью.
- д) оценочный химмотологический анализ рассматривает анализ не контактирующих материалов и их несовместимость с рабочей жидкостью.

12.23 Укажите какие агрегаты входят в состав гидросистемы:

- а) компрессор;
- б) ЧПУ (числовое програмное управление);
- в) насосов;
- г) коробка передач;
- д) соединительных трубопроводов.

г) в работающем гидроприводе происходит непрерывная циркуляция жидкости, сопровождающаяся отводом горячей жидкости в резервуары и по-

д) в не работающем гидроприводе происходит периодическая циркуляция жидкости, сопровождающаяся отводом горячей жидкости в резервуары и

12.26 На сколько градусов температура в полостях корпусов насоса и гид-

12.27 На сколько градусов температура в баке не ниже чем температура в

12.28 От каких факторов зависит температура жидкости в гидроприводе:

5-10 °C;

15-20 °C;

д)

10-13 °C.

20-25 °C

д)

ступлением охлажденной жидкости в полости высокого давления;

поступлением охлажденной жидкости в полости высокого давления;

ромотора ниже чем температура в полостях высокого давления?

б)

L)

от скорости движения среды у поверхностей.

б)

L)

3-5 °C;

7-10 °C;

выравнивание температур;

1-3 °C;

5-7 °C;

1-5 °C;

10-15 °C;

от числа Re;

полостях высокого давления?

от вязкости жидкости;

от нестабильные жидкости;

от интенсивности теплоотдачи;

a)

B)

a)

B)

а) б)

L)

12.29 Число Био (Bi) это?

- а) один из критериев подобия между всякими телами;
- б) один из критериев подобия между жидкостью и материалом трубопровода;
- в) один из критериев подобия между нагретым или охлажденным телом и окружающей средой;
- г) один из критериев подобия тепловых процессов в жидкостях и газах;
- д) один из критериев подобия тепловых процессов в металлах.
- 12.30 Что определяет равенство чисел Био для геометрически подобных тел?
- а) подобие геометрических размеров;
- б) подобие температурных полей;
- в) подобие полей скоростей;
- г) подобие силовых полей;
- д) подобие математических моделей.

12.31 Что такое Число Прандтля (Рг)?

- а) один из критериев подобия между всякими телами;
- б) один из критериев подобия между жидкостью и материалом трубопровода;
- в) один из критериев подобия между нагретым или охлажденным телом и окружающей средой;
- г) один из критериев подобия тепловых процессов в жидкостях и газах;
- д) один из критериев подобия тепловых процессов в металлах.

12.32 Чем определяется температура окружающей среды?

- а) определяется температурой гидроаппаратуры, которая оказывает влияния на окружающую среду;
- б) определяется температурой малого круга циркуляции жидкости в системе;
- в) определяется климатической зоной, в которой эксплуатируется гидросистема;
- г) определяется климатической зоной, в которой производится гидросистема;
- д) определяется местонахождением гидросистемы над уровнем моря.
- 12.33 По какой формуле определяется изменение температуры гидросистемы при нестационарном тепловом режиме?

a)
$$\theta_t = \theta_0 + \Delta \theta_0 \cdot e^{-t/\tau}$$
;

δ)
$$\theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e^{-t/\tau}\right);$$

в)
$$\Delta\theta_0 = \frac{\Delta N_f}{K_f \cdot F}$$
;

$$\Gamma) \theta_{x} = 5 + \theta_{0} + \frac{\Delta N_{f}}{K_{f} \cdot F};$$

д)
$$\theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e \cdot \frac{t}{\tau}\right).$$

12.34 По какой формуле определяется температура при охлаждении гидропривода?

a)
$$\theta_t = \theta_0 + \Delta \theta_0 \cdot e^{-t/\tau}$$
;

$$\delta) \ \theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e^{-t/\tau}\right);$$

$$\Delta \theta_0 = \frac{\Delta N_f}{K_f \cdot F};$$

$$\Gamma) \theta_{x} = 5 + \theta_0 + \frac{\Delta N_f}{K_f \cdot F};$$

д)
$$\theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e \cdot \frac{t}{\tau}\right).$$

12.35 По какой формуле определяется превышение температуры поверхностей гидросистемы над температурой окружающей среды?

a)
$$\theta_t = \theta_0 + \Delta \theta_0 \cdot e^{-t/\tau}$$
;

$$\text{ 6) } \theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e^{-t/\tau}\right);$$

в)
$$\Delta\theta_0 = \frac{\Delta N_f}{K_f \cdot F}$$
;

$$\Gamma) \theta_{x} = 5 + \theta_0 + \frac{\Delta N_f}{K_f \cdot F};$$

д)
$$\theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot (1 - e \cdot t/\tau).$$

12.36 По какой формуле определяется средняя температура рабочей жидкости?

a)
$$\theta_{x} = \theta_{0} + \Delta \theta_{0} \cdot e^{-t/\tau}$$
;

$$\text{ 6) } \theta_t = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e^{-t/\tau}\right);$$

B)
$$\Delta\theta_{\mathbf{x}} = \frac{\Delta N_f}{K_f \cdot F}$$
;

$$\Gamma) \ \theta_{x} = 5 + \theta_0 + \frac{\Delta N_f}{K_f \cdot F};$$

д)
$$\theta_{\mathbf{x}} = \theta_0 + \frac{\Delta N_f}{K_f \cdot F} \cdot \left(1 - e \cdot \frac{t}{\tau}\right).$$

- 12.37 При какой температуре окружающей среды обычно работают гидросистемы общепромышленного назначения?
- a) -35 до -15 °C;
- б) -15 до 0 °C;
- в) 0 до 25 °C;
- г) 0 до 35 °C;
- д) 0 до 30 °C.
- 12.38 На сколько градусов больше расчетного значения нагреваются темные поверхности при хранении гидросистем под открытым небом в тропиках?
- a) 0...10 °C;
- б) 10...15 °С;
- в) 20...40 °С;
- г) 30...50 °С;
- д) 40...60 °C.
- 12.39 На сколько градусов больше расчетного значения нагреваются темные поверхности при хранении гидросистем под открытым небом в умеренном климате?
- a) 0...10 °C;
- б) 10...25 °С;
- в) 15...30 °C;
- г) 25...40 °С;
- д) 40...60 °C.

- 12.40 На сколько градусов температура рабочей жидкости больше температуры рабочих поверхностей?
- а) приблизительно на 5 °C;
- б) приблизительно на 4 °C;
- в) приблизительно на 3 °C;
- г) приблизительно на 2 °C.
- д) приблизительно на 1 °C.
- 12.41 Какому числу равен обобщенный коэффициент теплоотдачи K_f при воздушном охлаждении в условиях естественной конвекции?
- a) $3-6 \text{ BT/m}^2 \cdot ^{\circ}\text{C};$
- 6) $6-9 \text{ BT/m}^2 \cdot {}^{\circ}\text{C};$
- в) 9-12 Bт/м².°С;
- г) 12-15 Bт/м².°С;
- д) 20-30 Bт/м².°C.
- 12.42 На какие группы делят рабочие жидкости в зависимости от легкости загорания:
- а) постоянно горючие;
- б) легковоспламеняющиеся;
- в) горючие;
- г) трудно горючие;
- д) негорючие.
- 12.43 Укажите наиболее вероятные причины пожароопасной ситуации:
- а) распыление рабочей жидкости под высоким давлением на раскаленные поверхности;
- б) распыление рабочей жидкости под высоким давлением на охлажденные поверхности;
- в) образование горючей паровоздушной смеси вблизи внешнего источника воспламенения;
- г) образование горючей паровоздушной смеси вблизи внутреннего источника воспламенения;
- д) образование горючей паровоздушной смеси во внутренних поластях гидропривода.

Лекция №13 Старение рабочей жидкости

- 13.1 Выберите правильные суждения:
- а) Старением в общем случае называют постоянные свойства рабочей жидкости по времени: температура вспышки, вязкость, кислотное число, плотность, оптические свойства.
- б) Старением в общем случае называют изменение свойств рабочей жидкости во времени: температура вспышки, вязкость, кислотное число, плотность, оптические свойства.
- в) Старением в общем случае называют изменение свойств рабочей жидкости при изменении давления: температура вспышки, вязкость, кислотное число, плотность, оптические свойства.
- г) Старением в общем случае называют мгновенное изменение свойств рабочей жидкости во времени: температура вспышки, вязкость, кислотное число, плотность, оптические свойства.
- д) Старением в общем случае называют изменение свойств присадок во времени: температура вспышки, вязкость, кислотное число, плотность, оптические свойства.
- 13.2 Какие факторы разрушают рабочую жидкость при эксплуатации:
- а) тепловое воздействие;

- б) механическое воздействие;
- в) влага, окружающий воздух, пыль;
- г) действие присадок;
- д) электрическое воздействие;
- 13.3 Какие факторы не разрушают рабочую жидкость при эксплуатации:
- а) тепловое воздействие;

- б) механическое воздействие;
- в) влага, окружающий воздух, пыль;
- г) действие присадок;
- д) электрическое воздействие;
- 13.4 На какие группы делят изменения происходящие в жидкости при старении:
- а) трибологического характера;
- б) физического характера;

в) социального характера;

- г) химического характера;
- д) механохимического характера.
- 13.5 Какой параметр характеризует старение?
- а) вязкость;

- б) давление;
- в) кислотное число;
- г) зольность;
- д) анилиновая точка.
- 13.6 Выберите правильные суждения:
- а) при хранении механико-химические процессы не проявляются и основную роль играют химические процессы;

- б) при хранении химические процессы не проявляются и основную роль играют механико-химические процессы;
- в) в результате процесса окисления образуются: кислоты, вода, смолы сложные эфиры, которые резко повышают кислотное число масла;
- г) в результате процесса окисления образуются: кислоты, вода, смолы сложные эфиры, которые резко понижают кислотное число масла;
- д) основной причиной старения рабочей жидкости при хранении являются термоокислительные процессы в базовом масле.

13.7 Выберите не правильные суждения:

- а) при хранении механико-химические процессы не проявляются и основную роль играют химические процессы;
- б) при хранении химические процессы не проявляются и основную роль играют механико-химические процессы;
- в) в результате процесса окисления образуются: кислоты, вода, смолы сложные эфиры, которые резко повышают кислотное число масла;
- г) в результате процесса окисления образуются: кислоты, вода, смолы сложные эфиры, которые резко понижают кислотное число масла;
- д) основной причиной старения рабочей жидкости при хранении являются термоокислительные процессы в базовом масле.
- 13.8 По каким формулам можно определить кислотное число при старении?

а)
$$y = y \cdot e^{x \cdot t}$$
;
б) $y = y_0 \cdot e^{K^n}$;
в) $y = y_0 \cdot e^{K \cdot t}$;
г) $y = y_0 \cdot e^{x^n}$;
д) $K_{OH} = y_0 \cdot e^{K \cdot t}$

- 13.9 Какое правило действует при определении скорости окисления жидкости?
- а) при повышении температуры на каждые 20 градусов скорость окисления возрастает в 2,5-4 раза, в зависимости от вида рабочей жидкости;
- б) при повышении температуры на каждые 10 градусов скорость окисления возрастает в 4,5-8 раз, в зависимости от вида рабочей жидкости;
- в) при повышении температуры на каждые 10 градусов скорость окисления возрастает в 2,5-4 раза, в зависимости от вида рабочей жидкости;
- г) при повышении температуры на каждые 100 градусов скорость окисления возрастает в 2,5-4 раза, в зависимости от вида рабочей жидкости;
- д) при повышении температуры на каждые 10 градусов скорость окисления возрастает в 25-40 раз, в зависимости от вида рабочей жидкости;

- 13.10 Какие материалы обладают наибольшей каталитической активностью при старении?
- а) железо, магний, хром;
- б) кобальт, свинец, медь;
- в) алюминий, олово;
- г) бумага, картон, ткани;
- д) резина.
- 13.11 Какие материалы являются слабыми катализаторами процессов старения?
- а) железо, магний, хром;
- б) кобальт, свинец, медь;
- в) алюминий, олово;
- г) бумага, картон, ткани;
- д) резина.
- 13.12 Какие материалы не ускоряют процесс старения?
- а) железо, магний, хром;
- б) кобальт, свинец, медь;
- в) алюминий, олово;
- г) бумага, картон, ткани;
- д) резина.

13.13 Выберите правильные суждения:

- а) процесс старения масел зависит также от развития колоний микроорганизмов, наиболее быстро развиваются микроорганизмы в парафиновонафтеновых маслах;
- б) процесс старения масел зависит также от развития колоний микроорганизмов, в бензолсодержащих маслах микроорганизмы почти не развиваются;
- в) внешним фактором способствующим микробиологическому окислению является вода с растворенными в ней солями;
- г) процесс старения масел зависит также от развития колоний микроорганизмов, наиболее быстро развиваются микроорганизмы в парафиновых маслах;
- д) процесс старения масел зависит также от развития колоний микроорганизмов, в парафиновыхмаслах микроорганизмы почти не развиваются;

13.14 Выберите не правильные суждения:

а) процесс старения масел зависит также от развития колоний микроорганизмов, наиболее быстро развиваются микроорганизмы в парафиновонафтеновых маслах;

- б) процесс старения масел зависит также от развития колоний микроорганизмов, в бензолсодержащих маслах микроорганизмы почти не развиваются;
- в) внешним фактором способствующим микробиологическому окислению является вода с растворенными в ней солями;
- г) процесс старения масел зависит также от развития колоний микроорганизмов, наиболее быстро развиваются микроорганизмы в парафиновых маслах;
- д) процесс старения масел зависит также от развития колоний микроорганизмов, в парафиновыхмаслах микроорганизмы почти не развиваются;

13.15 Какие изменения происходят в рабочей жидкости при динамических режимах?

- а) уменьшается концентрация кислорода вследствие захвата воздуха при перемешивании жидкости, пенообразования, подсоса воздуха в местах разрежения;
- б) увеличивается концентрация кислорода вследствие захвата воздуха при перемешивании жидкости, пенообразования, подсоса воздуха в местах разрежения;
- в) повышается концентрация катализаторов окисления вследствие выделения продуктов изнашивания в работающем гидроприводе;
- г) понижается концентрация катализаторов окисления вследствие выделения продуктов изнашивания в работающем гидроприводе;
- д) происходит деструкция молекул вязкостной присадки, приводящая к уменьшению вязкости жидкости; что ускоряет изнашивание пар трения.

13.16 Выберите не правильные суждения:

- а) при динамических режимах в жидкости уменьшается концентрация кислорода вследствие захвата воздуха при перемешивании жидкости, пенообразования, подсоса воздуха в местах разрежения;
- б) при динамических режимах в жидкости увеличивается концентрация кислорода вследствие захвата воздуха при перемешивании жидкости, пенообразования, подсоса воздуха в местах разрежения;
- в) при динамических режимах в жидкости повышается концентрация катализаторов окисления вследствие выделения продуктов изнашивания в работающем гидроприводе;
- г) при динамических режимах в жидкости понижается концентрация катализаторов окисления вследствие выделения продуктов изнашивания в работающем гидроприводе;
- д) при динамических режимах в жидкости происходит деструкция молекул вязкостной присадки, приводящая к уменьшению вязкости жидкости; что ускоряет изнашивание пар трения.

- 13.17 Каким параметром оценивается в общем случае интенсивность механического воздействия на жидкости при старении?
- а) удельной кинетической энергией;
- б) удельной потенциальной энергией;
- в) удельной гидравлической энергией;
- г) удельной механической энергией;
- д) удельной энергией сопротивления материала.

13.18 Выберите правильные суждения:

- а) вязкость незагущенных масел значительно меняется в процессе эксплуатации;
- б) вязкость незагущенных масел мало меняется в процессе эксплуатации;
- в) обычно вязкость незагущенных масел несколько увеличивается в процессе эксплуатации за счет полимеризации молекул углеводородов;
- г) обычно вязкость незагущенных масел значительно увеличивается в процессе эксплуатации за счет полимеризации молекул углеводородов;
- д) в процессе эксплуатации повышается температура вспышки незагущенного масла.

13.19 Выберите не правильные суждения:

- а) вязкость незагущенных масел значительно меняется в процессе эксплуатации;
- б) вязкость незагущенных масел мало меняется в процессе эксплуатации;
- в) обычно вязкость незагущенных масел несколько увеличивается в процессе эксплуатации за счет полимеризации молекул углеводородов;
- г) обычно вязкость незагущенных масел значительно увеличивается в процессе эксплуатации за счет полимеризации молекул углеводородов;
- д) в процессе эксплуатации повышается температура вспышки незагущенного масла.

13.20 Выберите правильные суждения:

- а) вязкость незагущенных масел значительно меняется в процессе эксплуатации;
- б) при эксплуатации загущенных масел в работающих гидроприводах в начальный период вязкость интенсивно уменьшается, а затем плавно уменьшается;
- в) при эксплуатации загущенных масел в не работающих гидроприводах в начальный период вязкость интенсивно уменьшается, а затем плавно уменьшается;
- г) при эксплуатации загущенных масел в работающих гидроприводах все время вязкость интенсивно уменьшается;
- д) вязкость незагущенных масел мало меняется в процессе эксплуатации.

13.21 Какие факторы разрушают рабочую жидкость при эксплуатации? а) адсорпция;								
б) тепловое воздействие;								
в) диффузия;								
г) радиация;								
д) ультрозвуковое явление.								
13.22 Основной причиной старения рабочей жидкости при хранении являются?								
а) синтез присадок в базовом масле;								
б) нарушение свойств жидкости на молекулярном уровне;								
в) термомеханические процессы в базовом масле;								
г) термоокислительные процессы в базовом масле;								
д) трибохі	имические п	роцесс	сы в базово	м масл	e.			
13.23 В результате процесса окисления рабочей жидкости образуются?								
a) смолы;	yabrare npe		сцилляты;	puoo n	OFF MAPI	ikoem o	оризуютел.	
в) кислоты	Ι:	-	ожные эфи	ры:		д) щел	очи:	
2) 11110110112	••	1) 001	omin er o q m	, , , , , , , , , , , , , , , , , , ,		<u></u>	·,	
13.24 Во сколько раз возрастает скорость окисления при повышении температуры масла в процессе окисления на каждые 10 градусов?								
	_			іа каж)	цые то	градусс)B (
a) 1,5-2,5 раза; в) 4-5,5 раза;			5-4 раза; 10 раз;	п) в	25 nan			
в) 4-3,3 pa	sa,	1) В 1	io pas,	д) в	25 pas	•		
13.25 Какие металлы обладают меньшей каталитической активностью в маслах при старении?								
а) желе	-	б)	плутоний:					
в) xpoм	•	r)		,	д)	литий.		
, .			7		. ,			
13.26 Какие металлы практически не ускоряют процесса окисления при старении?								
а) свин		б)	ванадий;					
в) меді		r)	олово;	д)	алю	миний;		
,		,	ŕ	,		Ź		

Лекция №14-16 Температурный режим гидропривода

- 14.1 Выберите правильные суждения:
- а) температура рабочей жидкости в гидросистемах постепенно понижается в связи с трением между слоями вязкой рабочей жидкости при остановке и гидравлическими сопротивлениями потоку в каналах гидроаппаратов и в трубопроводах;
- б) температура рабочей жидкости в гидросистемах постепенно повышается в связи с трением между слоями вязкой рабочей жидкости при движении и гидравлическими сопротивлениями потоку в каналах гидроаппаратов и в трубопроводах;
- в) с повышением температуры рабочей жидкости уменьшается вязкость и увеличиваются объёмные потери вследствие увеличения внутренних перетечек и наружных утечек в компонентах гидропривода;
- г) при нагреве до высокой температуры сохраняются условия смазывания поверхностей сопряжённых деталей при различных скоростях движения, не возникнает локальный нагрев поверхностей трения и интенсивное изнашивание;
- д) при нагреве до высокой температуры нарушаются условия смазывания поверхностей сопряжённых деталей при различных скоростях движения, может возникнуть локальный нагрев поверхностей трения, интенсивное изнашивание.
- 14.2 Какая максимальная рабочая температура возможна при работе на масле МГ-15В для аксиально-поршневых гидромашин?
- a) +35 °C; 6) +40 °C;
- в) +45 °С;
- г) +50 °C;
- д) +60 °C.
- 14.3 При увеличении вместимости и теплоотдающей поверхности гидробака происходит?
- а) охлаждение рабочей жидкости;
- б) повышается продолжительность нагрева рабочей жидкости;
- в) ничего не происходит;
- г) существенное изменение теплового режима гидропривода;
- д) тепловой режим гидропривода почти не изменяется.
- 14.4 Для чего в гитдросистемах применяют теплообменники?
- а) для интенсивного охлаждения рабочей жидкости;
- б) для дестабилизации температуры рабочей жидкости;
- в) для интенсивного нагревания рабочей жидкости;
- г) для стабилизации температуры рабочей жидкости;
- д) для фильтрации рабочей жидкости.

- а) потери мощности на насосах и двигателях (уплотнения, подшипники);
- б) потери мощности в результате внутренних утечек;
- в) потери мощности в результате внешних утечек;
- г) потери мощности в результате дросселирования;
- д) потери мощности из-за сопротивления потоку;
- 14.6 Каких источников нагрева рабочей жидкости не существуют в гидроприводе?
- а) потери мощности на насосах и двигателях (уплотнения, подшипники);
- б) потери мощности в результате внутренних утечек;
- в) потери мощности в результате внешних утечек;
- г) потери мощности в результате дросселирования;
- д) потери мощности из-за сопротивления потоку;
- 14.7 Какое количество воздуха содержат все масла при атмосферном давлении на 1 литр своего объема?
- 1) 0,1 литра воздуха;
- 2) 0,2 литра воздуха;
- 3) 0,5 литра воздуха;
- 0,6 литра воздуха;
- 5) 0,06 литра воздуха.
- 14.8 По какой формуле можно определить потери мощности, при циклической работе, переходящие в тепло?

a)
$$N = t_{\rm B} + \frac{E_{\rm np}}{a \cdot \sqrt[3]{W_{\rm M}^2} \cdot K_{\rm np}};$$

б)
$$\Delta N = N_{\rm cp.3at}^{\rm H} - N_{\rm cp.пол}^{\rm гд};$$

B)
$$t = t_{\rm B} + \frac{E_{\rm np}}{a \cdot \sqrt[3]{W_{\rm M}^2} \cdot K_{\rm np}};$$

$$\Gamma) \qquad E = \Delta t_{\rm M-B}^{\rm MOH} \cdot a \cdot K_{\rm np} \cdot \sqrt[3]{W_{\rm M}^2} ;$$

д)
$$\Delta N = N_{\rm cp.пол}^{\rm гд} - N_{\rm cp.зат}^{\rm H}.$$

14.9 По какой формуле определяется температура масла в баке?

a)
$$N_{\rm M} = t_{\rm B} + \frac{E_{\rm np}}{a \cdot \sqrt[3]{W_{\rm M}^2} \cdot K_{\rm np}};$$

б)
$$\Delta N = N_{\text{ср.зат}}^{\text{н}} - N_{\text{ср.пол}}^{\text{гд}};$$

B)
$$t_{_{\rm M}} = t_{_{\rm B}} + \frac{E_{_{\rm \Pi p}}}{a \cdot \sqrt[3]{W_{_{\rm M}}^2} \cdot K_{_{\rm \Pi p}}};$$

$$\Gamma) \qquad E_{\rm M} = \Delta t_{\rm M-B}^{\rm AOH} \cdot a \cdot K_{\rm np} \cdot \sqrt[3]{W_{\rm M}^2} ;$$

д)
$$\Delta N = N_{\rm cp.пол}^{\rm гд} - N_{\rm cp.зат}^{\rm H}.$$

14.10 По какой формуле определяется тепловой поток рассеиваемый баком?

д)
$$\Delta N = N_{\rm cp.пол}^{\rm гд} - N_{\rm cp.зат}^{\rm H}.$$

- 14.11 Если температура масла в баке будет больше допустимой температуры нагрева рабочей жидкости, то применяют один из вариантов:
- устанавливают кондиционеры воздуха; a)
- б) увеличивают вместимость гидробака;
- B) увеличивают охлаждающие радиаторы;
- L) устанавливают аппараты теплообменные;
- меняют рабочую жидкость. д)
- 14.12 По каким признакам классифицируют теплообменники?
- по вместимости; a)
- по способу передачи тепла; б)
- **B**) по основному назначению;
- по пропускной способности;
- по виду рабочих сред. д)
- 14.13 К наиболее используемым рекуперативным теплообменникам относят:

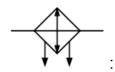
L)

- пластинчатые; a)
- теплообменники типа труба в трубе; б)
- патрубные; B)
- кожухотрубчатые; L)
- регенеративные. д)
- 14.14 Аппараты теплообменные регенеративного типа применяют:
- в криогенной технике; a)
- для подогрева компонентов двигателя для запуска ДВС; б)
- B) для охлаждения в медицинской технике;
- L) в гидроприводах;
- д) в машиностроении.
- 14.15 В зависимости от вида рабочих сред различаются теплообменники:
- a) радиаторные;
- б) жидкостно-жидкостные;
- B) жидкостно-парожидкостные;
- L) твёрдо-жидкостные;
- д) газожидкостные.

- 14.16 По тепловому режиму различаются теплообменники:
- а) периодического действия, в которых наблюдается нестационарный тепловой процесс;
- б) периодического действия, в которых наблюдается стационарный тепловой процесс;
- в) непрерывного действия с неустановившимся по времени тепловым процессом;
- г) непрерывного действия с установившимся по времени тепловым процессом;
- д) непрерывного и периодического действия одновременно.
- 14.17 По направлению движения теплоносителей теплообменники делятся:
- а) одноточные;

- б) прямоточные;
- в) перекрёстного тока;
- г) многопоточные;
- д) противоточные.
- 14.18 По виду хладагента охладители гидроприводов делят на:
- а) радиальные;

б) водяные;


в) воздушные;

г) контактные;

- д) маслянные.
- 14.19 Какие требования предъявляют к теплообменникам:
- а) возможность сборки и разборки;
- б) обладание универсальными свойствами;
- в) обладание эфирными свойствами;
- г) обладание способностью адаптации к климатическим условиям;
- д) высокий коэффициент теплопередачи;
- 14.20 Какие требования не предъявляют к теплообменникам:
- а) возможность сборки и разборки;
- б) малое гидравлическое сопротивление;
- в) возможность разборки конструкции и чистки;
- г) обладание способностью адаптации к климатическим условиям;
- д) высокий коэффициент теплопередачи;

- 14.21 Какой теплообменник обозначен на схеме:
- а) подогреватель;
- б) охладитель без указаний линий подвода и отвода охлаждающей среды;
- в) охладитель с указанием линий подвода и отвода охлаждающей среды;
- г) охладитель и подогреватель;
- д) охлаждающий бак.

14.22 Какой теплообменник обозначен на схеме

- а) подогреватель;
- б) охладитель без указаний линий подвода и отвода охлаждающей среды;
- в) охладитель с указанием линий подвода и отвода охлаждающей среды;
- г) охладитель и подогреватель;
- д) охлаждающий бак.

14.23 Где устанавливают радиатор обтекаемый хладагентом (воздух, вода):

- а) в напорной магистрали после насоса до фильтра;
- б) в сливной магистрали перед гидробаком до или после фильтра сливного;
- в) во всасывающей магистрали после фильтра перед насосом;
- г) не имеет значения где устанавливают;
- д) на обводной (байпасной) линии.

14.24 Какие параметры относятся к основным техническим параметрам теплообменников:

- а) габаритные размеры теплообменников;
- б) номинальное давление;
- в) отводимый тепловой поток;
- г) стабильность работы;
- д) долговечность теплообменников.

14.25 Какие преимущества водяных теплообменников по сравнению с воздушными?

- а) высокий КПД;
- б) способность работать с различными жидкостями;
- в) не возникает сквозняк;
- г) компактность;
- д) отсутствует нагрев окружающей стреды.

14.26 Какие недостатки водяных теплообменников по сравнению с воздушными?

- а) возможно попадание воды в масло;
- б) образование паро-воздушных паров;
- в) не имеет способности отдавать тепло окружающей среде;
- г) возможна утечка охлаждающей воды;
- д) отсутствует шум вентилятора.

- 14.27 Какие преимущества воздушных теплообменников по сравнению с водяными?
- а) низкие расходы на установку;
- б) способность работать в любых условиях;
- в) способность быстрого охлаждения;
- г) низкая стоимость эксплуатации;
- д) нет опасности для гидросистемы;
- 14.28 Какие недостатки воздушных теплообменников по сравнению с водяными?
- а) засорение системы пылью и др. мусором;
- б) возможность деформации системы твёрдыми частицами в следствии открытой рабочей поверхности;
- в) склонны к шуму;
- г) не подходит для небольших комнат;
- д) большие габаритные размеры.

Лекция № 17. Загрязнители рабочих жидкостей

- 17.1 Какие загрязнители несут основную ответственность за износ элементов системы?
- а) мягкие студенистые частицы;
- б) твердые частицы с острыми кромками;
- в) вещества, растворенные в рабочей жидкости;
- г) мелкодисперсная пыль;
- д) волокна.

17.2 Выберите правильное суждение:

- а) мягкие студенистые частицы это частицы которые закупоривают зазоры, в результате чего деталь выходят из строя
- б) мягкие студенистые частицы это частицы которые не вызывают износа элементов системы
- в) мягкие студенистые частицы это частицы которые оставляют глубокие царапины;
- г) мягкие студенистые частицы это частицы которые оказывают очень агрессивное действие на детали гидросистемы;
- д) мягкие студенистые частицы это частицы которые оказывают агрессивное действие на детали гидросистемы;
- 17.3 Какое действие оказывает бронза как загрязнитель рабочей жидкости?
- а) слабо агрессивное;
- б) агрессивное;
- в) очень агрессивное;
- г) закупоривающее;

- д) никакого.
- 17.4 Выберите варианты, которые относятся к загрязнению наследственной группы:
- а) загрязненность из-за нестабильности физико-химических свойств рабочей жидкости, в том числе при несоблюдении условий и сроков хранения;
- б) загрязненность пылью в пунктах заправки и слива рабочей жидкости;
- в) загрязнение, вносимые при операциях монтажа и сборки;
- г) остатки формовочных смесей.
- д) загрязненность за счет износа элементов гидросистем.
- 17.5 Какие загрязнения относятся к технологическим:
- а) заусенцы, сколы острых кромок и продукты износа режущих инструментов;
- б) пригар и окалина, образующие при операциях термообработке, сварки;

- в) загрязненность пылью в пунктах заправки и слива рабочей жидкости;
- г) загрязненность моющих жидкостей.
- д) частицы резиновых и других уплотнений.
- 17.6 Какие загрязнения относятся к эксплуатацтонным:
- а) загрязненность пылью в пунктах заправки и слива рабочей жидкости;
- б) загрязнение вносимые при расконсервации изделий, монтаже, отладке систем и запуска их в работу;
- в) остатки формовочных смесей;
- г) загрязненность за счет износа элементов гидросистем;
- д) частицы резиновых и других уплотнений.

17.7 Что такое чистота рабочей жидкости?

- А) комплекс критериев, характеризующих состояние загрязненности ее и внутренних полостей гидропривода нерастворимыми в рабочей жидкости частицами по сравнению с некоторым эталоном;
- Б) комплекс критериев, характеризующих состояние движущейся жидкости, при котором в результате снижения давления возникают газовые и паровоздушные пузырьки с последующим их разрушением внутри жидкости;
- В) свойство рабочей жидкости оказывать сопротивление сдвигу или относительному перемещению ее слоев;
- Г) свойство рабочей жидкости изменять объем в процессе ее изобарического нагревания (при постоянном давлении);
- Д) физическая величина, равная отношению массы жидкости к ее объему.
- 17.8 Все загрязнения по источникам и причинам их возникновения делятся на:
- а) наследственные, содержащиеся в рабочей жидкости в состоянии поставки.
- б) наследственные, содержащиеся в рабочей жидкости при эксплуатации.
- в) технологические, образующиеся в процессе производства гидропривода и его элементов.
- г) эксплуатационные, возникающие во время работы гидросистемы и при её техническом обслуживании.
- 17.9 Какой размер твёрдых абразивных частиц наиболее опасен для гидросистем?
- а) меньше величины зазора в гидроустройствах;
- б) соизмеримые с величиной зазора в гидроустройствах;
- в) больше величины зазора в гидроустройствах;
- г) никакой;
- д) разный, не зависит от величины зазора в гидроустройствах.

- 17.10 Каково действие частиц с острыми кромками на детали?
- А) повышают жаростойкость;
- Б) оставляют глубокие царапины;
- В) если деталь стальная, снижают вязкость стали;
- Г) не оставляют царапин, более того, шлифуют деталь;
- Д) повышают коррозионную стойкость;
- 17.11 Какие загрязнители не вызывают износа элементов системы?
- А) твердые частицы с острыми кромками;
- Б) мягкие студенистые частицы;
- В) вещества, растворенные в рабочей жидкости;
- Γ) мягкие студенистые частицы и вещества, растворенные в рабочей жидкости;
- Д) твердые частицы с острыми кромками и вещества, растворенные в рабочей жидкости/
- 17.12 Укажите правильное суждение.
- А) действие чугуна на рабочие жидкости слабо агрессивное;
- Б) твердые частицы с острыми кромками не несут основную ответственность за износ элементов системы;
- В) износ элементов гидросистемы не зависит от рабочего давления;
- Γ) мягкие студенистые частицы. Они могут закупоривать зазоры, в результате чего детали выходят из строя;
- Д) чем выше рабочее давление в гидросистеме, тем ниже силы, под действием которых твердые частицы вдавливаются в зазор.
- 17.13 На сколько основных групп делятся все загрязнения по источникам и причинам их возникновения, попадающие во внутренние полости систем и устройств?
- А) одну;
- Б) две;
- В) три;
- Γ) четыре;
- д) пять.
- 17.14 Выберите варианты, которые относятся к загрязнению наследственной группы:
- а) загрязненность из-за нестабильности физико-химических свойств рабочей жидкости, в том числе при несоблюдении условий и сроков хранения;
- б) загрязненность пылью в пунктах заправки и слива рабочей жидкости;

- в) загрязнение, вносимые при операциях монтажа и сборки;
- г) остатки формовочных смесей.
- д) загрязненность за счет износа элементов гидросистем.

17.15 Какие загрязнения относятся к технологическим:

- а) заусенцы, сколы острых кромок и продукты износа режущих инструментов;
- б) пригар и окалина, образующие при операциях термообработке, сварки;
- в) загрязненность пылью в пунктах заправки и слива рабочей жидкости;
- г) загрязненность моющих жидкостей.
- д) частицы резиновых и других уплотнений.

17.16 Какие загрязнения относятся к эксплуатацтонным:

- а) загрязненность пылью в пунктах заправки и слива рабочей жидкости;
- б) загрязнение вносимые при расконсервации изделий, монтаже, отладке систем и запуска их в работу;
- в) остатки формовочных смесей;
- г) загрязненность за счет износа элементов гидросистем;
- д) частицы резиновых и других уплотнений.

17.17 К технологическим загрязнениям относятся:

- А) продукты коррозии деталей;
- Б) частицы резиновых и других уплотнений;
- В) загрязнения, вносимые при операциях монтажа и сборки;
- Г) остатки формовочных смесей;
- Д) загрязненность, связанная с распадом рабочей жидкости в процессе работы.
- 17.18 Какой вид загрязнения не относится к загрязнениям жидкости в процессе поставки?
- а) из-за недостаточной очистки рабочей жидкости при изготовлении.
- б) из-за нестабильности физико-химических свойств рабочей жидкости.
- в) связанный с недостаточной коррозионной стойкостью ёмкостей, складских резервуаров, заправочного оборудования.
- г) из-за абразивных материалов при шлифовании.
- 17.19 Какой вид загрязнения не относится к технологическим загрязнениям жидкости?
- а) остатки формовочных смесей.
- б) загрязненность пылью в пунктах заправки и слива рабочей жидкости.
- в) заусенцы, сколы острых кромок и продукты износа режущих инструментов.

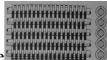
- г) абразивные материалы, внедрённые в обрабатываемую поверхность при шлифовке.
- 17.20 Какие виды загрязнений относятся к технологическим загрязнениям жидкости?
- а) загрязнения, вносимые при операциях монтажа и сборки.
- б) загрязненность пылью в пунктах заправки и слива рабочей жидкости.
- в) продукты коррозии деталей.
- г) загрязнённость моющих жидкостей.
- 17.21 Какой вид загрязнения не относится к эксплуатационным загрязнениям жидкости?
- а) загрязнения, вносимые при расконсервации изделия, монтаже, отладке системы и запуска их в работу.
- б) загрязнения, вносимые консервированными изделиями при открытии.
- в) частицы резиновых и других уплотнений.
- г) загрязнённость, связанная с негерметичностью гидросистем.
- 17.22 Какие виды загрязнений относятся к эксплуатационным загрязнениям жидкости?
- а) загрязнённость за счёт износа элементов гидросистем.
- б) частицы резиновых и других уплотнений.
- в) загрязненность моющих жидкостей.
- г) загрязненность из-за недостаточной очистки рабочей жидкости при изготовлении.

Лекция №18 Классы чистоты жидкостей

18.1. Какие классы чистоты рабочей жидкости применяется в гидроприво-							
де общемашиностроительного назначения? а) 0-6 класса; б) 00-1 класса;							
в) 15-17 класса; г) 8-14 класса; д) 3-7 класса.							
b) 13 17 kiluccu, 1) 0 11 kiluccu, 4) 3 7 kiluccu.							
18.2 Какой класс чистоты рабочей жидкости установленный по ГОСТ 17216-2001, относится к насосам и гидромоторам аксиально-поршневого типа (с клапанным распределением) при номинальным давлением до 20,0 МПа?							
a) 10; б) 11; в) 12; г) 13; д) 14;							
18.3. Какая требуется тонкость фильтрации в гидросистеме с использованием сервоклапанов?							
а) до 2 мкм;b) до 4 мкм;c) до 5 мкм;d) до 5 мкм;							
д) до 6 мкм.							
д) до 0 мкм.							
18.4 Выберите правильные суждения: а) под абсолютной тонкостью фильтрации понимается способность фильтроэлементом задерживать 80-90% частиц загрязнений; б) под абсолютной тонкостью фильтрации понимается минимальный размер частиц загрязнителей, полностью задерживаемых фильтроэлементом; в) под абсолютной тонкостью фильтрации понимается наименьший размер отверстий в фильтроэлементе; г) под абсолютной тонкостью фильтрации понимается продольный размер загрязнений; д) под абсолютной тонкостью фильтрации понимается максимальный размер частиц загрязнений, пропускаемых фильтроэлементом.							
18.5. На какие группы делят все способы очистки жидкости?							
а) ручной метод; б) механический метод;							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод;							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод; д) гравитационный метод.							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод; д) гравитационный метод.							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод; д) гравитационный метод. 18.6. По каким признакам классифицируют фильтры? а) по тонкости фильтрации;							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод; д) гравитационный метод.							
а) ручной метод; б) механический метод; в) силовой метод; г) электромагнитный метод; д) гравитационный метод. 18.6. По каким признакам классифицируют фильтры? а) по тонкости фильтрации; б) по способу очистки;							

а) поверхностный; б) глубинный;								
в) тонкой очистки; г) грубой очистки; д) сепаратор.								
18.8. Выберите правильное определение:								
а) активная поверхность фильтра – это поверхность фильтрующего								
элемента;								
б) активная поверхность фильтра – это поверхность фильтра;								
в) активная поверхность фильтра – это поверхность, через которую								
проходит рабочая жидкость;								
г) активная поверхность фильтра – это рабочая поверхность фильтро-								
элемента;								
д) активная поверхность фильтра – это поверхность, через которую не								
проходит рабочая жидкость.								
10.0 I/								
18.9. Какой величине равна площадь активной поверхности поверхности								
ных фильтров по сравнению со всей поверхностью?								
а) 20-30% общей поверхности фильтровального слоя;								
б) 30-40% общей поверхности фильтровального слоя; в) 40-50% общей поверхности фильтровального слоя;								
в) 40-50% общей поверхности фильтровального слоя; г) 50-60% общей поверхности фильтровального слоя;								
д) 60-70% общей поверхности фильтровального слоя.								
A) of total newspanierin qualification.								
18.10. Под чистотой гидросистемы понимают:								
а) комплекс критериев, характеризующих состояние загрязненности								
всей системы, по некоторому эталону;								
б) комплекс критериев, характеризующих состояние загрязненности								
рабочей жидкости;								
в) комплекс критериев, характеризующих состояние загрязненности								
гидроаппаратуры;								
г) комплекс критериев, характеризующих состояние загрязненности								
гидробаков;								
д) комплекс критериев, характеризующих состояние загрязненности								
фильтров.								
10.11 Crowns = FOCT 17216 2001 versus =								
18.11. Сколько по ГОСТ 17216—2001 устанавливается классов чистоты								
жидкости? a) 15; б) 16; в) 17; г) 18; д) 19.								
а) 15, б) 16, б) 17, 1) 16, Д) 17.								
18.12. Во сколько раз увеличивается срок эксплуатации при повышении								
тонкости фильтрации РЖ в гидросистеме с 20—25 мкм до 5 мкм?								
The first transfer of								

18.7. Какой фильтр поглощает больше загрязняющих веществ?


- в 5 раз; a) в 3 раза; б) в 7 раз; B) в 10 раз; г) особых изменений не наблюдается. д)
- 18.13. Во сколько раз уменьшаются затраты при соблюдении необходимых требований по очистке рабочих жидкостей?
- 1,5; 2; 3; 5; a)
- б)
- B)
- r)
- д) правильного варианта нет.

Лекция № 19-20. Фильтрация рабочих жидкостей. Фильтры.

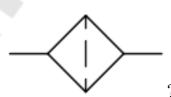
- 19.1. Выберите материал, который не применяется в глубинных фильтрах.
- а) тканевое кружево;
- б) шлаковата;

в) пластмассы;

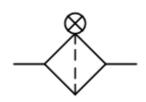
- г) стекло;
- д) ткань.
- 19.2. От чего не зависит тонкость фильтрации глубинных фильтров?
- а) от марки фильтра;
- б) от конструкции фильтра;
- в) от вида используемых волокнистых материалов;
- г) от длины волокон;
- д) от толщины волокон.

- 19.3. Какой вид фильтрующего материала указан на рисунке
- а) проволочная ткань;
- б) тканевое кружево;
- в) щелевая трубка;
- г) бумажная масса;
- д) стекловолокнистый холст.
- 19.4 Какая структура у металлокерамического фильтра?
- а) органические волокна, произвольно ориентированные и упрочненные связующим средством;
- б) органические волокна, произвольно ориентированные и пропитанные феноловой смолой;
- в) прутки из нержавеющей стали, произвольно ориентированные, спеченные и каландрованные;
- г) спеченные металлические шарики;
- д) металлические волокна, произвольно ориентированные и упрочнённые связующим средством.
- 19.5. Какая область применения у фильтрующего элемента из стекловолокнистого холста?
- а) топливные фильтры;
- б) фильтры особо тонкой очистки для высококачественных элементов;
- 3) всасывающие и обратные фильтры;
- 4) фильтры для моторного масла;
- д) фильтры грубой очистки.

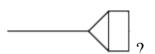
19.6. Какие недостатки у фильтрующего элемента из металлического волокна?


- а) очень высокая стоимость;
- б) ограниченная возможность очистки;
- в) плохая поглощающая способность;
- г) средняя поглощающая способность;
- д) незначительная потеря давления.

19.7. Каким требованиям не должен отвечать корпуса фильтра?

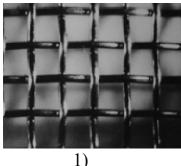

- а) выдерживать максимальное избыточное давление;
- б) выдерживать минимальное избыточные давления;
- в) применение материалов не совместимых с рабочей жидкостью;
- г) низкий перепад давлений на корпусе;
- д) конструкция корпуса должна быть прочной.

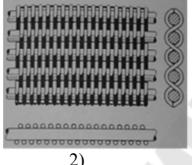
- 19.8. Какой фильтр указан на схеме
- а) общего обозначения;
- б) с магнитным сепаратором;
- в) заливная горловина;
- г) с индикатором загрязненности;
- д) воздушный.

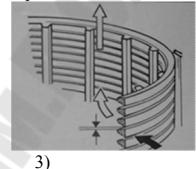


- 19.9. Какой фильтр указан на схеме
- а) общего обозначения;
- б) с магнитным сепаратором;
- в) заливная горловина;
- г) с индикатором загрязненности;
- д) воздушный.

- 19.10. Какой фильтр указан на схеме?
- а) общего обозначения; б)
- в) заливная горловина; г)
- д) воздушный.

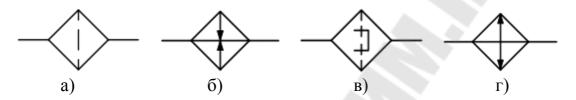

- с магнитным сепаратором;
- с индикатором загрязненности;




- 19.11. Какой фильтр указан на схеме
- а) общего обозначения;
- б) с магнитным сепаратором;
- в) заливная горловина;
- г) с индикатором загрязненности;
- д) воздушный.
- 19.12. Какой показатель не характеризует фильтр?
- а) пропускная способность фильтра (л/мин);
- б) коэффициент пор фильтруещего элемента;
- в) коэффициент фильтрации;
- г) максимальный объем загрязнений, задерживаемый без разрушения;
- д) тонкость очистки.
- 19.13. Для чего устанавливают фильтры в байпасной линии?
- а) для очистки рабочей жидкости, находящейся в гидробаке, в процессе ее циркуляции;
- б) для защиты всех элементов гидросистемы;
- в) для очистки рабочей жидкость вновь заливаемой в гидробак;
- г) для очистки воздуха попадающего в гидробак при изменении объема масла в баке в процессе работы;
- д) для защиты всех элементов, кроме насоса.
- 19.14. Укажите недостатки установки фильтров на всасывающей гидролинии?
- а) дорогостоящие корпус фильтра и фильтрующий элемент;
- б) приходится останавливать систему для смены фильтрующего элемента;
- в) требуется устанавливать в фильтр предохранительные клапана;
- г) ухудшатся всасывающая способность насосов и возможно появление кавитации;
- д) не защищает высокочувствительные элементы.
- 19.15. При каком номинальном давлении работают фильтры сетчатые типа С42?
- a) 6,3 MΠa;
- б) 1 МПа;
- в) 0,63 MПa;
- г) 0,63 атм;
- д) 16 МПа.

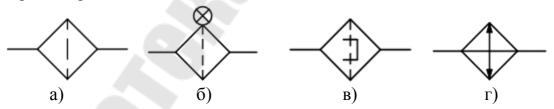
- 19.16. При каком номинальном давлении работают фильтры щелевые (пластинчатые) с ручной очисткой?
- a) 6,3 MΠa;
- б) 1 MПа;
- в) 0,63 MПа;
- г) 0,63 атм;
- д) 16 МПа.

19.17. Укажите верные соответствия к рисунку, изображающему виды фильтровальных материалов поверхностных фильтров.

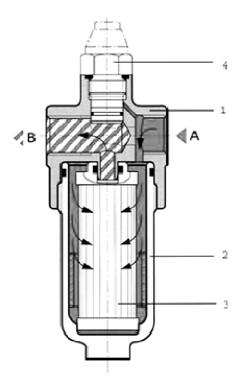


- А) 1 проволочная ткань, 2 щелевая трубка, 3 тканевое кружево;
- Б) 1 щелевая трубка, 2 тканевое кружево, 3 проволочная ткань;
- В) 1 -тканевое кружево, 2 -проволочная ткань, 3 щелевая трубка;
- Г) 1 проволочная ткань, 2 тканевое кружево, 3 щелевая трубка;
- Д) 1 –тканевое кружево, 2 –щелевая трубка, 3 –проволочная ткань.
- 19.18. Укажите неверные суждения.
- А) структура пор не зависит от используемых волокнистых материалов, от длины и толщины волокон;
- Б) областью применения металлического волокна являются: тонкая и особо тонкая фильтрация, работа в условиях высоких температур и перепада давления, использование со всеми рабочими жидкостями;
- В) коэффициент фильтрации (β_x). Данный коэффициент позволяет сравнивать фильтрующие элементы с разной тонкостью фильтрации, изготовленные разными производителями;
- Г) грязеёмкость фильтра характеризуется максимальным объемом или весом загрязнений удерживаемых фильтроэлементом без разрушений и закупоривания его ячеек;
- Д) сетчатые, проволочные и щелевые фильтры имеют небольшое сопротивление при протекании через них рабочей жидкости, но тон-кость их очистки невелика.
- 19.19. Каким требованиям не должен отвечать корпуса фильтра?
- а) выдерживать максимальное избыточное давление;

- б) выдерживать минимальное избыточные давления;
- в) применение материалов не совместимых с рабочей жидкостью;
- г) низкий перепад давлений на корпусе;
- д) конструкция корпуса должна быть прочной.
- 19.20. Какой из перечисленных пунктов не является показателем характеризующим фильтры?
- а) устойчивость фильтра.
- б) тонкость очистки.
- в) пропускная способность.
- г) грязеемкость фильтра
- 19.21. Какими показателями характеризуются фильтры?
- а) устойчивость фильтра.
- б) тонкость очистки.
- в) грязеемкость фильтра
- г) коэффициент фильтрации.
- 19.22. Чем характеризуется тонкость очистки фильтра?
- а) характеризуется различным размером частиц, которые пропускает фильтр.
- б) характеризуется средним размером частиц, которые пропускает фильтр.
- в) характеризуется минимальным размером частиц, которые пропускает фильтр.
- г) характеризуется максимальным размером частиц, которые пропускает фильтр.
- 19.23. Чем характеризуется пропускная способность фильтра?
- а) величиной давления, которое может пропускать фильтр при заданном перепаде давления.
- б) величиной расхода, который не может пропускать фильтр при заданном перепаде давления.
- в) величиной расхода, который может пропускать фильтр при заданном перепаде давления.
- г) величиной потребления насоса, которую может пропускать фильтр при заданном перепаде давления.
- 19.24. Чем характеризуется грязеёмкость фильтров?
- а) минимальным объёмом или весом загрязнений, удерживаемых фильтроэлементом без разрушений и закупоривания его ячеек.
- б) максимальным объёмом или весом загрязнений, удерживаемых фильтроэлементом без разрушений и закупоривания его ячеек.
- в) средним объёмом или весом загрязнений, удерживаемых фильтроэлементом без разрушений и закупоривания его ячеек.
- г) максимальным объёмом или весом загрязнений, удерживаемых фильтроэлементом с разрушением и закупориванием его ячеек.


- 19.25. Для чего введено понятие « коэффициент фильтрации»?
- а) для сравнения фильтрующих элементов с одинаковой тонкостью фильтрации, изготовленных различными производителями.
- б) для сравнения фильтрующих элементов с одинаковой тонкостью фильтрации.
- в) для сравнения фильтрующих элементов с различной тонкостью фильтрации, изготовленные различными производителями.
- г) для сравнения фильтрующих элементов с максимальной тонкостью фильтрации, изготовленные различными производителями.
- 19.26. Как на принципиальной гидросхеме обозначается фильтр в общем случае?

19.27. Как на принципиальной гидросхеме обозначается фильтр с магнитным сепаратором?



19.28. Как на принципиальной гидросхеме обозначается фильтр с индикатором загрязненности?

- 19.29. В чём состоит задача сапунов?
- А) в очистке рабочей жидкости, находящейся в гидробаке, в процессе ее циркуляции;
- Б) в очистке воздуха, попадающего в гидробак при изменении объема масла в баке в процессе работы;
- В) обеспечивают защиту всех элементов, кроме насоса;
- Г) обеспечивают защиту всех элементов гидросистемы;
- Д) очищают рабочую жидкость, вновь заливаемую в гидробак.

19.30. Укажите верную совокупность определений к рисунку, изображающему напорный фильтр типа DF.

- А) 1 стакан фильтра; 2 головка напорного фильтра; 3 элемент напорного фильтра; 4 индикатор загрязнения;
- Б) 1 стакан фильтра; 2 головка напорного фильтра; 3 индикатор загрязнения; 4 элемент напорного фильтра;
- В) 1 элемент напорного фильтра; 2 головка напорного фильтра; 3 индикатор загрязнения; 4 стакан фильтра;
- Γ) 1 индикатор загрязнения; 2 стакан фильтра; 3 элемент напорного фильтра; 4 головка напорного фильтра;
- Д)1 головка напорного фильтра; 2 стакан фильтра; 3 элемент напорного фильтра; 4 индикатор загрязнения.

Лекция № 21-24 Уплотнения и уплотнительная техника

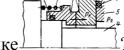
21.1 Выберите правильное определение:

- а) герметология наука, изучающая закономерности разгерметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- б) герметология наука, изучающая закономерности герметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- в) герметологией называется непроницаемость жидкости, находящейся под некоторым давлением через зазоры в стыке двух неподвижных или относительно перемещающихся поверхностей деталей гидроагрегатов;
- г) герметология это совокупность элементов конструкции, предотвращающей или уменьшающей утечку жидкости или газа через зазоры между деталями машин и сооружений в окружающую среду;
- д) герметология это свойства сред, находясь в зазоре между трущимися телами, снижать трение, уменьшать износ, устранять заедание и задиры трущихся поверхностей.

21.2 Выберите правильное определение:

- а) герметичность наука, изучающая закономерности разгерметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- б) герметичность наука, изучающая закономерности герметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- в) герметичностью называется непроницаемость жидкости, находящейся под некоторым давлением через зазоры в стыке двух неподвижных или относительно перемещающихся поверхностей деталей гидроагрегатов;
- г) герметичность это совокупность элементов конструкции, предотвращающей или уменьшающей утечку жидкости или газа через зазоры между деталями машин и сооружений в окружающую среду;
- д) герметичность это свойства сред, находясь в зазоре между трущимися телами, снижать трение, уменьшать износ, устранять заедание и задиры трущихся поверхностей.

21.3 Выберите правильное определение:

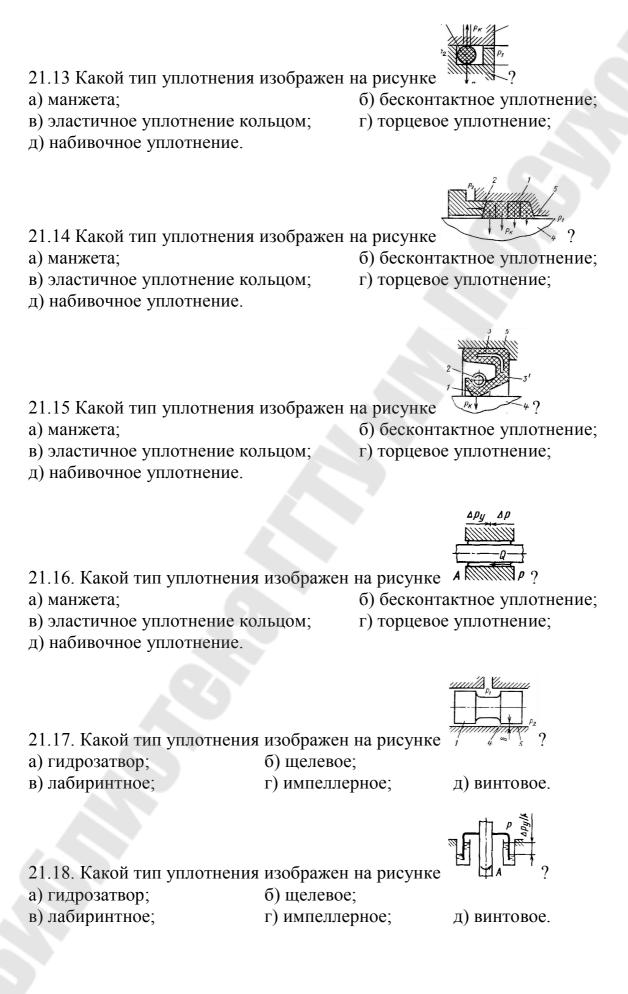

- а) уплотнение наука, изучающая закономерности разгерметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- б) уплотнение наука, изучающая закономерности герметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- в) уплотнением называется непроницаемость жидкости, находящейся под некоторым давлением через зазоры в стыке двух неподвижных или относительно перемещающихся поверхностей деталей гидроагрегатов;

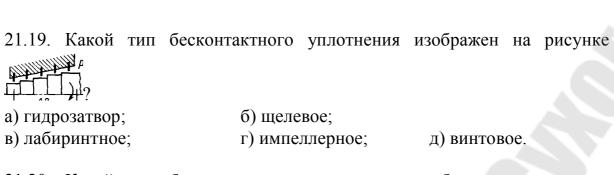
- г) уплотнение это совокупность элементов конструкции, предотвращающей или уменьшающей утечку жидкости или газа через зазоры между деталями машин и сооружений в окружающую среду;
- д) уплотнение это свойства сред, находясь в зазоре между трущимися телами, снижать трение, уменьшать износ, устранять заедание и задиры трущихся поверхностей.

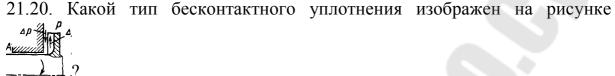
21.4 Выберите правильное определение:

- а) смазочная способность сред наука, изучающая закономерности разгерметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- б) смазочная способность сред наука, изучающая закономерности герметизации, разрабатывающая научные основы создания и эксплуатации уплотнений;
- в) смазочной способностью сред называется непроницаемость жидкости, находящейся под некоторым давлением через зазоры в стыке двух неподвижных или относительно перемещающихся поверхностей деталей гидроагрегатов;
- г) смазочная способность сред это совокупность элементов конструкции, предотвращающей или уменьшающей утечку жидкости или газа через зазоры между деталями машин и сооружений в окружающую среду;
- д) смазочная способность сред это свойства сред, находясь в зазоре между трущимися телами, снижать трение, уменьшать износ, устранять заедание и задиры трущихся поверхностей.
- 21.5 Какие основные задачи решаются при проектировании уплотнений?
- а) усложнение и стандартизация конструкций уплотнений;
- б) использование дешевых и недефицитных герметизирующих материалов;
- в) уменьшение трудовых, материальных и энергетических затрат при изготовлении и эксплуатации уплотнений без снижения их ресурса;
- г) упрощение и стандартизация конструкций уплотнений;
- д) увеличение трудовых, материальных и энергетических затрат при изготовлении и эксплуатации уплотнений без снижения их ресурса.
- 21.6 На какие виды делятся уплотнения по назначению:
- а) уплотнения неподвижных соединений;
- б) уплотнения подвижных соединений;
- в) уплотнения подвижных соединений передающих вращательное движение;
- г) уплотнения подвижных соединений передающих поступательное движение;
- д) уплотнения подвижных соединений передающих сложное движение;

- 21.7 На какие виды не делятся уплотнения по назначению:
- а) уплотнения неподвижных соединений;
- б) уплотнения подвижных соединений;
- в) уплотнения подвижных соединений передающих вращательное движение;
- г) уплотнения подвижных соединений передающих поступательное движение;
- д) уплотнения подвижных соединений передающих сложное движение;
- 21.8 На какие подклассы делятся уплотнения в соответствии с основными эксплуатационными особенностями, определяемыми свойствами уплотнителя:
- а) проточные,
- б) контактные,
- в) эластомерные,
- г) кольцевые,
- д) диафрагмовые
- 21.9 На какие подклассы не делятся уплотнения в соответствии с основными эксплуатационными особенностями, определяемыми свойствами уплотнителя:
- а) проточные,
- б) контактные,
- в) эластомерные,
- г) кольцевые,
- д) диафрагмовые
- 21.10 Какие признаки характеризуют свойства уплотнения?
- а) структурная схема;
- б) класс материала силового уплотняющего элемента;
- в) класс материала основного уплотняющего элемента;
- г) условное графическое обозначение;
- д) способ герметизации.
- 21.11 Какие признаки не характеризуют свойства уплотнения?
- а) структурная схема;
- б) класс материала силового уплотняющего элемента;
- в) класс материала основного уплотняющего элемента;
- г) условное графическое обозначение;
- д) способ герметизации.




21.12 Какой тип уплотнения изображен на рисунке


а) манжета;

б) бесконтактное уплотнение;

- в) эластичное уплотнение кольцом;
- г) торцевое уплотнение;
- д) набивочное уплотнение.

б) щелевое;

- в) лабиринтное; г) импеллерное; д) винтовое.

 21.21. Какой тип бесконтактного уплотнения изображен на рисунке доступация доступация
- 21.22. По какой формуле определяются утечки для цилиндрических дета-

г) импеллерное;

д) винтовое.

- 21.23. При каких температурах возможна эксплуатация уплотнений в виде резиновых колец?
- a) -100...+100 °C; б) -100...+50 °C; в) -50...+100 °C; г) 0...+100 °С; д) +50...+100 °С.

а) гидрозатвор;

в) лабиринтное:

- 21.24. При каких давлениях возможна эксплуатация уплотнений в виде металлических колец?
- а) до 5 МПа; б) до 16 МПа; в) до 20 МПа; г) больше 20 МПа; д) до 10МПа.

21.25. При каких давлениях ний?	возможна эксплуатация	манжетных уплотне-							
а) до 5 МПа;	б) до 16 МПа;								
в) до 50 МПа;	г) больше 20 МПа;	д) до 10МПа.							
21.26. При каких давлениях возможна эксплуатация торцевых уплотнений?									
а) до 5 МПа;	б) до 16 МПа;								
в) до 20 МПа;	г) 2030 МПа;	д) до 40МПа.							
	,								
21.27. При каких окружных уплотнения вала? а) до 5 м/с; б) до 10 м/с; в) до 20 м/с; г) до 60 м/с; д) не зависит от скорости.	скоростях применяются	кожаные манжетные							
21.28. При каких окружных ния вала из синтетических р а) до 5 м/с; б) до 10 м/с; в) до 20 м/с; г) до 60 м/с; д) не зависит от скорости.		манжетные уплотне-							
21.29. При каких окружных вала? a) до 5 м/c;	скоростях применяются	торцевые уплотнения							
б) до 10 м/с;									
в) до 20 м/с;									
г) до 60 м/c;									
д) не зависит от скорости.									
a, and submitted of enopouting									

Лекция № 25-26. Эксплуатация рабочих жидкостей

- 25.1. Какой гарантийный срок хранения рабочей жидкости и смазочных материалов со дня изготовления?
- а) Более пяти лет;
- б) Менее пяти лет;
- в) Ровно пять лет;
- г) три года;
- д) четыре года.
- 25.2. Перед заливкой или доливкой рабочей жидкости в гидропривод ее необходимо подготовить одним из следующих способов:
- а) физической очисткой, при которой не меняется химический состав РЖ;
- б) физической очисткой, при которой меняется химический состав РЖ;
- в) механической очисткой, при которой не меняется химический состав РЖ;
- г) механической очисткой, при которой меняется химический состав РЖ;
- д) очисткой рабочей жидкости от механических загрязнений
- 25.3. Одним из множества процессов регенерации масла может быть следующий:
- а) удаление воды, введение разделяющего агента для образования крупных конгломератов загрязнений, которые при последующем 10... 12-часовом отстаивании выпадают в осадок;
- б) восстановление масла путем удаления легких топливных фракций с использованием испарительного элемента и вакуумного насоса;
- в) восстановление масла путем удаления тяжелых топливных фракций с использованием испарительного элемента;
- г) удаление воды, введение разделяющего агента для образования крупных конгломератов загрязнений, которые при последующем 1...2-часовом отстаивании не выпадают в осадок;
- д) восстановление эксплуатационных свойств масла путем вакуумного насоса.
- 25.4. Расстояние от светильников до хранящихся товаров в складских помещениях должно быть не менее?
- а) 0.5м; б) 0.4м; в) 0.3м; г) 0.2м; д) 0.1м.
- 25.5. Что такое огнестойкость жидкости?
- а) жидкость не должна быть причиной распространения пожара;
- б) жидкость не должна быть причиной возникновения или распространения пожара;

- в) жидкость должна быть минеральной;
- Γ) жидкость не должна воспламеняться при 180° C;
- д) жидкость не должна синтетической.
- 25.6. В складских помещениях при бесстеллажном способе хранения материалы должны укладываться в штабели и через каждые 6 м в складах следует устраивать, как правило, продольные проходы шириной ...:

а) не менее 0,8 м;

б) не менее 0,7м;

в) не менее 0,6м;

- г) не менее 0,5м;
- д) не менее 0,4м.
- 25.7. Хранение в таре жидкостей с температурой вспышки выше 120°C в количестве до 60 м³ допускается в:
- а) наземных хранилищах из горючих материалов при условии устройства пола из негорючих материалов и засыпки покрытия слоем утрамбованной земли толщиной не менее 0,2 м;
- б) подземных хранилищах из горючих материалов при условии устройства пола из негорючих материалов и засыпки покрытия слоем утрамбованной земли толщиной не менее 0,1 м;
- в) подземных хранилищах из горючих материалов при условии устройства пола из негорючих материалов;
- г) наземных хранилищах из горючих материалов при условии отсутствия устройства пола из негорючих материалов и засыпки покрытия слоем утрамбованной земли толщиной не менее 0,2 м;
- д) подземных хранилищах из горючих материалов при условии устройства пола из негорючих материалов и засыпки покрытия слоем утрамбованной земли толщиной не менее $0.2\,\mathrm{M}$.
- 25.8. При большой вязкости нефтепродуктов их необходимо подогревать для обеспечения свободного слива из цистерн. Прогревать следует только

а) Трубчатым электронагревателем;

б) Паром;

в) Горячей водой;

г) СВЧ излучением;

- д) Токами высокой частоты.
- 25.9. Совместное хранение легковоспламеняемых и горючих жидкостей в таре в одном помещении разрешается при их общем количестве

a) не более 250 м³;

б) не более 200 м³;

в) не более 300 м³;

 Γ) не более 400 M^3 ;

д) не более 500 м^3 .

- 25.10. Что необходимо знать для более точного прогноза срока эксплуатации рабочей жидкости?
- а) полный химмотологический анализ гидропривода;
- б) полный анализ физического состояния гидропривода;
- в) графики рабочих температур и давлений;
- г) график изменения расхода гидродвигателя и подачи насоса;
- д) ожидаемый баланс изменений загрязнений в гидроприводе.
- 25.11. Какова последовательность замены рабочей жидкости одной марки на другую того же класса?
- а) необходимо залить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и слить новую;
- б) необходимо слить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и залить новую;
- в) рабочую жидкость после 3... 5 мин работы гидропривода сливают из него полностью и заливают той же марки свежую рабочую жидкость, физико-химические характеристики которой проверены;
- г) в первую добавляют растворитель для очистки внутренних поверхностей системы и перфуроэтиленовую резину, которая покрывает их защитным слоем, гидропривод включают для работы с добавленными в масло компонентами в течение некоторого времени, после чего из него сливают старую и заливают новую рабочую жидкость;
- д) старую рабочую жидкость удаляют с помощью воздуха под большим давлением и затем заливают новую.
- 25.12. Какова последовательность замены одной рабочей жидкости на другую той же марки?
- а) необходимо залить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и слить новую;
- б) необходимо слить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и залить новую;
- в) рабочую жидкость после 3... 5 мин работы гидропривода сливают из него полностью и заливают той же марки свежую рабочую жидкость, физико-химические характеристики которой проверены;
- г) в первую добавляют растворитель для очистки внутренних поверхностей системы и перфуроэтиленовую резину, которая покрывает их защитным слоем, гидропривод включают для работы с добавленными в масло компонентами в течение некоторого времени, после чего из него сливают старую и заливают новую рабочую жидкость;
- д) старую рабочую жидкость удаляют с помощью воздуха под большим давлением и затем заливают новую.

- 25.13. Какова последовательность замены рабочей жидкости на масляной основе на рабочую жидкость на водной основе?
- а) необходимо залить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и слить новую;
- б) необходимо слить старую рабочую жидкость, предварительно прогнав весь ее объем 3-5 раз через гидропривод, и залить новую;
- в) рабочую жидкость после 3... 5 мин работы гидропривода сливают из него полностью и заливают той же марки свежую рабочую жидкость, физико-химические характеристики которой проверены;
- г) в первую добавляют растворитель для очистки внутренних поверхностей системы и перфуроэтиленовую резину, которая покрывает их защитным слоем, гидропривод включают для работы с добавленными в масло компонентами в течение некоторого времени, после чего из него сливают старую и заливают новую рабочую жидкость;
- д) старую рабочую жидкость удаляют с помощью воздуха под большим давлением и затем заливают новую.

25.14. Какие существуют способы регенерации масла?

- а) добавление воды, введение разделяющего агента для образования крупных конгломератов загрязнений, которые при последующем отстаивании выпадают в осадок;
- б) удаление воды, введение разделяющего агента для образования крупных конгломератов загрязнений, которые при последующем отстаивании выпадают в осадок;
- в) отделение и осаждение в силовых полях скоагулированных частиц и удаление воды;
- г) восстановление масла путем удаления легких топливных фракций с использованием испарительного элемента и вакуумного насоса;
- д) восстановление эксплуатационных свойств масла путем обогащения присадками.
- 25.15. На какие виды делятся жидкости по пожарной опасности?
- а) пожароопасные;
- б) легковоспламеняющиеся;
- в) горючие,
- г) трудновоспламеняющиеся;
- д) негорючие.
- 25.16. На какие виды не делятся жидкости по пожарной опасности?
- а) пожароопасные;

б) легковоспламеняющиеся;

в) горючие,

г) трудновоспламеняющиеся;

д) негорючие.

- 25.17. К какой категории относят нефтяные масла?
- а) пожароопасные;
- б) легковоспламеняющиеся;
- в) горючие,
- г) трудновоспламеняющиеся;
- д) негорючие.
- 25.18. К какой категории относят синтетические масла?
- а) пожароопасные;
- б) легковоспламеняющиеся;
- в) горючие,
- г) трудновоспламеняющиеся;
- д) негорючие.
- 25.19. Какие существуют наиболее вероятные причины пожароопасных ситуаций?
- а) при аварии гидросистемы, когда рабочая жидкость может распыляться под высоким давлением и попадать на раскаленные поверхности некоторых элементов;
- б) при аварии гидросистемы, когда рабочая жидкость не может распыляться под высоким давлением и попадать на раскаленные поверхности некоторых элементов;
- в) образование негорючей паровоздушной смеси в помещении, где находится гидропривод и имеются внешние источники воспламенения, например электрические контакты;
- г) образование горючей паровоздушной смеси в помещении, где находится гидропривод и имеются внешние источники воспламенения, например электрические контакты;
- д) на открытых площадках и в хорошо вентилируемых отсеках машин, где находится гидропривод и имеются внешние источники воспламенения.