Лекция 1 ОСНОВНЫЕ ПРИНЦИПЫ ИЗМЕРЕНИЙ

- Метрология наука об измерениях физических величин, методах и средствах обеспечения их единства.
- Измерение это нахождение значений физической величины опытным путем с помощью специально для этого предназначенных технических средств.
- Основное уравнение измерения:
- Q=qU
 - где Q значение измеряемой величины,
- q единица измерения,
- U результат измерения.

- Средства измерения технические средства, имеющие нормированные метрологические свойства:
- эталоны единиц физических величин
- меры
- образцовые средства измерений
- рабочие средства измерений

• Свойства эталонов:

- - воспроизводимость
 - неизменность
- сличаемость

• Эталоны классифицируют на:

- первичный (национальный и международный)
- вторичный (эталон-копия, эталон сравнения, эталон-свидетель)
 - комплекс средств измерений
 - одиночный эталон
 - групповой эталон
 - эталонный набор
- рабочий

Основные метрологические показатели средств измерения:

- деление шкалы прибора
- длина (интервал) деления шкалы
- - цена деления шкалы
- диапазон показаний
- предел измерений
- - предел допустимой погрешности средства измерения
- - погрешность измерения
- - точность измерений
- - поверка

Международная система единиц измерения

основные дополнительные производные

метр (м)

килограмм (кг)

секунда (с)

ампер (А)

кельвин (К)

кандела (кд)

моль (моль)

радиан (рад)

стерадиан (ср)

ИЗМЕРЕНИЯ

промышленные лабораторные прямые косвенные

Метод измерений - совокупность приемов использования принципов и средств измерений.

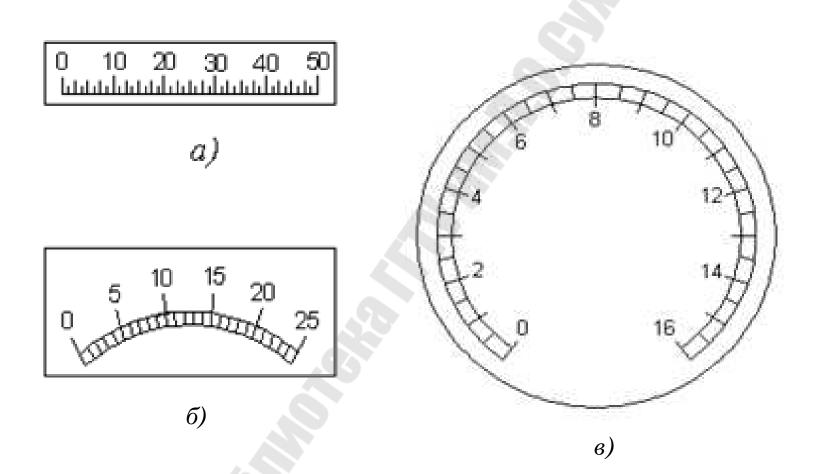
- метод непосредственной оценки
- метод сравнения с мерой
- нулевой метод

Теплотехнические измерения и теплотехнический контроль

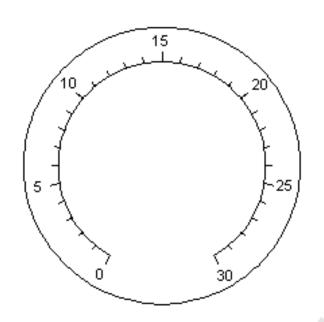
- **Теплотехнические измерения** служат для определения многих физических величин, связанных с процессами выработки и потребления тепловой энергии.
- В энергетических установках теплотехнические измерения служат для непрерывного производственного контроля за работой оборудования и называются теплотехническим (тепловым) контролем.
- **Теплотехнический контроль** позволяет обеспечить:
- надежную и безопасную эксплуатацию установок;
- экономически наивыгоднейший режим работы оборудования;
- организацию технического учета работы агрегатов и электростанции в целом.

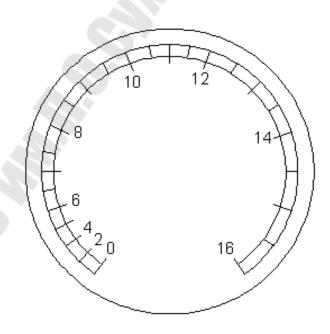
ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

ОСНОВНЫЕ СВОЙСТВА ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

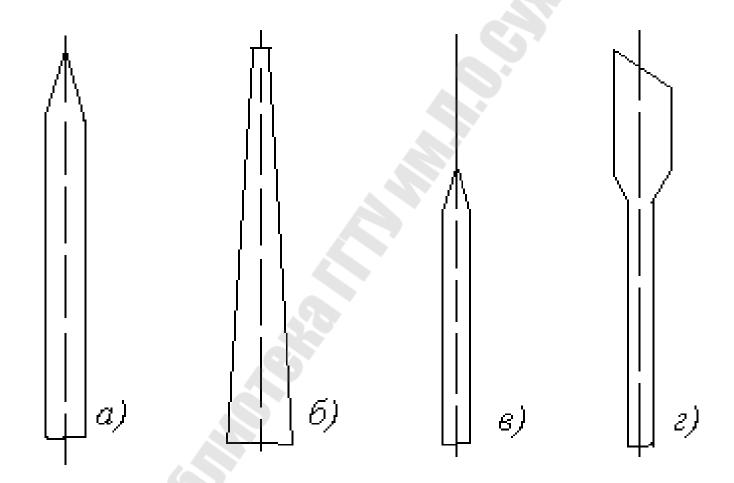

- О- ТОЧНОСТЬ
- о- чувствительность
- о- быстродействие
- о- надежность

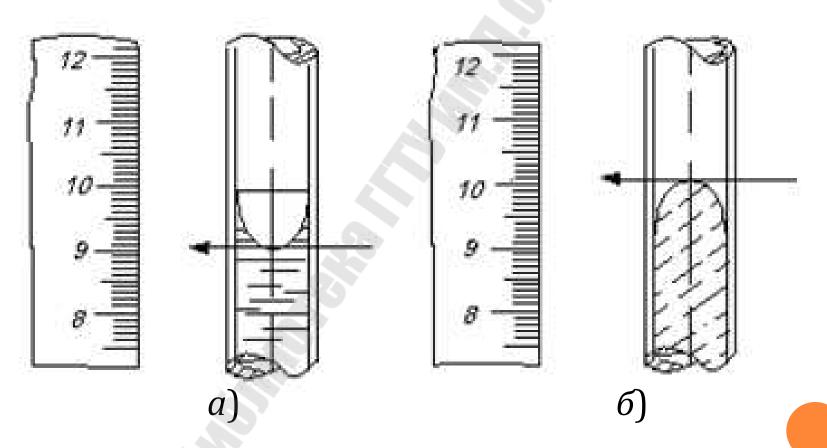
0


ОСНОВНЫЕ ЭЛЕМЕНТЫ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ


- о- измерительное устройство
- о- отсчетное устройство
- **шкалы** и **указатели** (показывающие приборы)
- - записывающие приспособления и диаграммная бумага (самопишущие приборы)
- **счетные устройства** (интегрирующие приборы)

ШКАЛЫ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

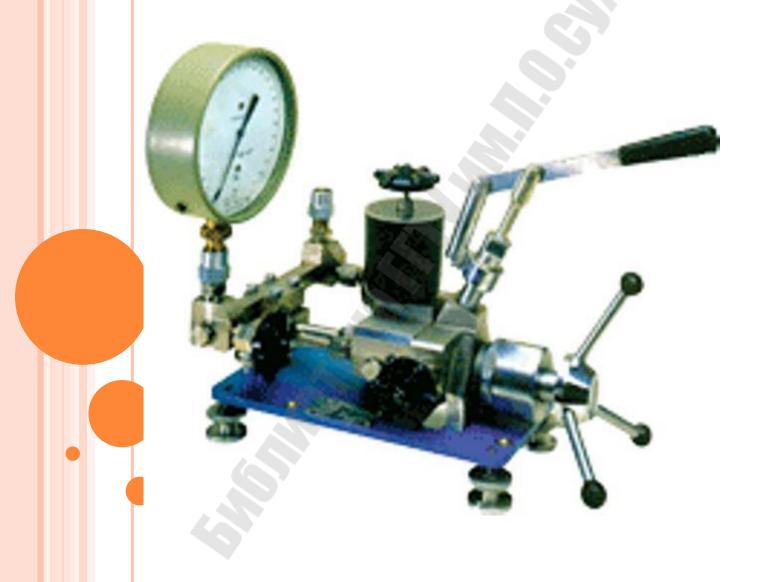

a – прямолинейная; δ – дуговая; ϵ – круговая


Круговые шкалы приборов: а – равномерная; б – неравномерная

УКАЗАТЕЛЬНЫЕ СТРЕЛКИ ПРИБОРОВ

a – клиновая; δ – клиновая стержневая; ϵ , ϵ – ножевая

МЕНИСК ЖИДКОСТИ В СТЕКЛЯННОЙ ИЗМЕРИТЕЛЬНОЙ ТРУБКЕ


a – вогнутый; δ – выпуклый

КЛАССИФИКАЦИЯ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

- Основная классификация предусматривает деление приборов по роду измеряемых величин.
- о для измерения:
- температуры термометры и пирометры;
- давления манометры, вакуумметры, мановакуумметры, тягомеры, напоромеры и барометры;
- расхода и количества расходомеры, счетчики и весы;
- уровня жидкости и сыпучих тел уровнемеры и указатели уровня;
- состава дымовых газов газоанализаторы;
- - качества воды и пара кондуктометры и кислородомеры.

- **Дополнительная классификация** подразделяет указанные приборы на следующие группы:
- по назначению **промышленные** (технические), **лабораторные**, **образцовые** и **эталонные**;
- по характеру показаний **показывающие**, **регистрирующие** (самопишущие и печатающие) и **интегрирующие**;
- по форме представления показаний **аналоговые** и **цифровые**;
- по принципу действия **механические, электрические, жидкостные, химические, радиоизотопные** и др.;
- по характеру использования **оперативные, учетные** и **расчетные**;
- по местоположению местные и с дистанционной передачей показаний;
- по условиям работы **стационарные** (щитовые) и **переносные**;
- по габаритам **полногабаритные**, **малогабаритные** и **миниатюрные**.

погрешности измерений

Классификация погрешностей измерений

Абсолютная погрешность, выражаемая в единицах измерений, представляет собой разность между измеренным значением (показанием прибора) и действительным значением измеряемой величины.

Относительная погрешность, указываемая в процентах, есть отношение абсолютной погрешности к действительному значению, т. е.

Приведенная погрешность определяется как отношение абсолютной погрешности измерительного прибора к нормирующему значению . За нормирующее значение чаще всего принимается диапазон измерения прибора.

Для определения действительного значения к показанию прибора вводится **поправка** *с*, которая численно равна абсолютной погрешности, взятой с обратным знаком:

Поправка алгебраически складывается с результатом измерения:

Иногда для получения точного результата показания прибора умножаются на поправочный множитель **k**.

Значения , \boldsymbol{c} и \boldsymbol{k} в большинстве случаев находятся опытным путем.

Погрешности измерений в зависимости от их характера делятся на: систематические (основная и дополнительные) грубые случайные

Динамические

Если обозначить через *п* число проведенных измерений, а через *m* число полученных одинаковых случайных погрешностей, то **вероятность** (частота) появления этих погрешностей *P* находится по формуле:

Поверка измерительных приборов

Поверка - сравнение показаний прибора с показаниями точного прибора, имеющего в несколько раз меньшую погрешность измерения, чем поверяемый прибор, для нахождения основной погрешности.

Характерные величины:

- вариация показаний
- непостоянство показаний
- порог чувствительности

Допускаемые погрешности и класс точности приборов

Допускаемая основная погрешность характеризует наибольшее возможное отклонение показаний прибора от действительного значения в обе стороны, в связи с чем перед ней ставятся знаки ±.

Приведенная допускаемая основная погрешность прибора определяется как отношение абсолютной допускаемой основной погрешности к диапазону показаний и выражается в процентах согласно равенству:

По приведенной допускаемой основной погрешности приборы разделяются на различные классы точности:

0,01; 0,015; 0,02; 0,025; 0,04; 0,05; 0,06; 0,1; 0,15; 0,2; 0,25; 0,4; 0,5; 0,6; 1; 1,5; 2,5 и 4.

Измерение температуры

Температурные шкалы

Температура характеризует степень нагретости тела, которая определяется внутренней кинетической энергией теплового движения молекул.

Уравнение шкалы температур

где и – температура соответственно таяния льда и кипения воды при нормальном давлении и ускорении свободного падения 980,665 см/с²;

- и объемы жидкости, соответствующие температурам и ;
- объем жидкости, соответствующий температуре

Кельвин, исходя из второго начала термодинамики, предложил определять температуру на основании равенства:

где T_1 и T_2 – температура соответственно холодильника и нагревателя;

Q1 и Q2 – количество теплоты, соответственно полученной рабочим веществом от нагревателя и отданной холодильнику.

Пусть T_2 равно температуре кипения воды (T_{100}), а T_1 температуре таяния льда (T_0); тогда, приняв разность T_2 - T_1 =100 град и обозначив количества теплоты, соответствующие этим температурам, через Q_{100} и Q_0 , получим:

При любой температуре нагревателя:

- уравнение термодинамической шкалы температур Решением XI Генеральной конференции по мерам и весам предусмотрено применение двух температурных шкал: термодинамической и международной практической. В термодинамической шкале Кельвина нижней точкой является точка абсолютного нуля (0 К), а единственной экспериментальной основной точкой – тройная точка воды.

Международная практическая температурная шкала основана на ряде воспроизводимых равновесных состояний, которым соответствуют определенные значения температур (основные реперные точки), и на эталонных приборах, градуированных при этих температурах. Основные реперные точки реализуются как определенные состояния фазовых равновесий некоторых чистых веществ и охватывают интервал температур от -259,34 °C (тройная точка равновесия водорода) до +1064,43 °C (точка затвердевания золота).

Температуру, измеряемую по международной практической шкале, обозначают буквой t, а числовые значения сопровождают знаком °С. По обеим шкалам (термодинамической международной) температуру можно выразить как в К, так и в °С в зависимости от начала отсчета (положения нуля) по шкале. Температура ПО термодинамической шкале связана с температурой международной практической ПО соотношением:

Классификация приборов для измерения температуры

Термометры расширения основаны на свойстве т<mark>ел</mark> изменять под действием температуры свой объем.

Манометрические термометры работают по принципу изменения давления жидкости, газа или пара с жидкостью в замкнутом объеме при нагревании или охлаждении этих веществ.

Термоэлектрические термометры построены на свойстве разнородных металлов и сплавов образовывать в паре (спае) термоэлектродвижущую силу, зависящую от температуры спая.

Термометры сопротивления основаны на свойстве металлических проводников изменять в зависимости от нагрева их электрическое сопротивление.

Пирометры работают по принципу измерения излучаемой нагретыми телами энергии, зависящей от температуры этих тел.

Диапазоны измерений:

```
-190-650
- термометры расширения
°C
                                 -160-600
- манометрические термометры
- термоэлектрические термометры -50-1800
°C.
                                 -200-650
- термометры сопротивления
°C
                                - 300-6000
- пирометры
°C
```

Термометры расширения

- жидкостные стеклянные
- дилатометрические

Жидкостные термометры

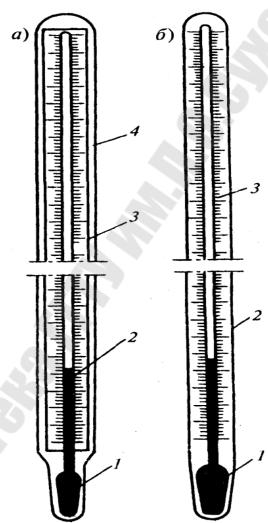
В качестве рабочих веществ используются ртуть и органические жидкости – этиловый спирт, толуол и др.

Преимущества ртутных термометров:

- большой диапазон измерения температуры, при котором ртуть остается жидкой;
- несмачиваемость стекла ртутью;
- возможность заполнения термометра химически чистой ртутью из-за легкости ее получения и пр.

Диапазон измерения - -35-560 °C, температурный коэффициент объемного расширения – 0,18·10-³ 1/К.

Достоинство термометров с органическими жидкостями:


- высокий коэффициент объемного расширения жидкости (1,13·10-³ 1/К).

Диапазон измерения - -190-100 °C.

Выпускаемые термометры по своей конструкции делится на две группы:

- 1) термометры с вложенной шкалой, у которых шкальная пластина вставлена внутрь оболочки и жестко скреплена с капилляром (рис. 4.1*a*);
- 2) термометры палочного типа, у которых шкала нанесена непосредственно на внешнюю поверхность толстостенного капилляра (рис. 4.16).

Лабораторные ртутные термометры

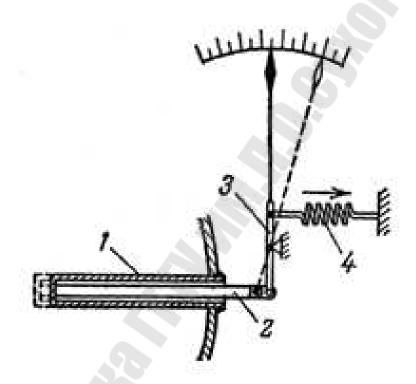
а – с вложенной шкалой: 1 – стеклянный резервуар;
 2 – капилляр; 3 – шкальная пластина; 4 – стеклянная оболочка;
 б – палочный: 1 – резервуар; 2 – толстостенный капилляр; 3 – шкала на наружной поверхности капилляра

По назначению жидкостные термометры подразделяются на:

- лабораторные;
- технические (производственные);
- рабочие эталоны (образцовые).

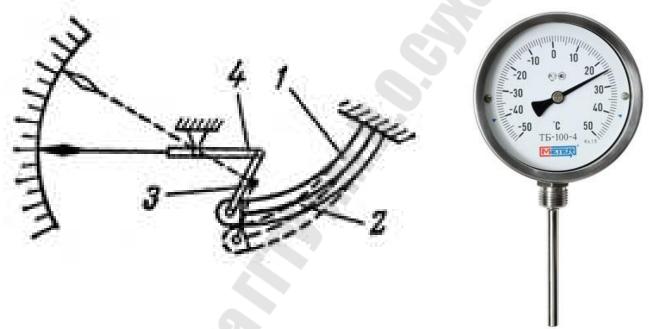
Дилатометрические термометры

Действие основано на относительном удлинении под влиянием температуры двух твердых тел, имеющих различные температурные коэффициенты линейного расширения.


стержневой пластинчатый (биметаллический)

Зависимость длины l твердого тела от его температуры t выражается равенством:

где l_0 – длина тела при температуре 0 °C;

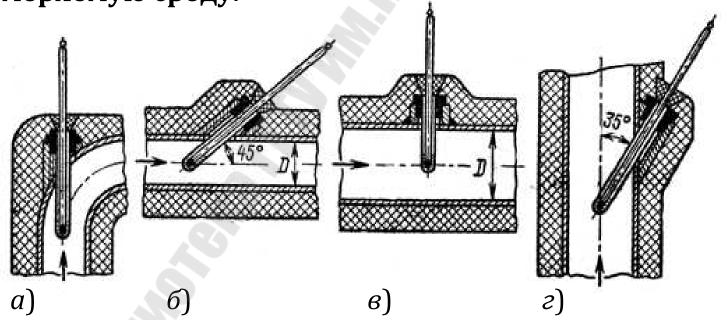

α – средний температурный коэффициент линейного расширения тела, К⁻¹.

Стержневой термометр

Имеет закрытую с одного конца трубку 1, помещаемую в измеряемую среду и изготовленную из материала с большим коэффициентом линейного расширения. В трубку вставлен стержень 2, прижимаемый к ее дну рычагом 3, скрепленным с пружиной 4.

Пластинчатый термометр

Состоит из двух изогнутых и спаянных между собой по краям металлических полосок, из которых полоска 1 имеет большой коэффициент линейного расширения, а полоска 2 — малый. Полученная пластинка меняет в зависимости от температуры степень своего изгиба, величина которого при помощи тяги 3, рычага 4 и соединенной с ним стрелки указывается по шкале прибора.


Установка термометров расширения

Применяются два способа установки ртутных термометров:

-в защитных оправах (или гильзах)

-путем непосредственного погружения термометров

в измеряемую среду.

Установка ртутного термометра в защитной гильзе: a – вдоль оси трубопровода; б – наклонно к оси горизонтального трубопровода ($D \le 200$ мм); e – нормально к оси горизонтального трубопровода (D > 200 мм); e – на вертикальном трубопроводе

Поверка термометров

Периодическая поверка технических и лабораторных термометров производится сравнения их показаний с показаниями образцовых термометров 2-го разряда, а также по реперным точкам плавления льда и кипения воды. Термометры поверяются в 3-5 отметках шкалы, расположенных через равные интервалы. При поверке термометров методом сравнения применяются термостаты электрообогревом, заполняемые дистиллированной водой (с интервалом поверки до 99°C), минеральным маслом (до 200°C) или селитрой (до 550°C). Поверка отметок 100 положения термометра И производится соответственно В термостатах **плавления льда** и **кипения воды.** Для пове**рк**и термометров служат термостаты типов (водяной) и ТС-24 (водяной и масляный).

Поправки к показаниям ртутных термометров

При точных измерениях температур с помощью ртутных термометров к их показаниям вводятся следующие поправки:

- основная Δt ;
- на температуру выступающего столбика ртути Δt_{B} ;
- на смещение положения нулевой точки $\Delta t_{
 m C}$

В общем случае определение действительной температуры среды t по показаниям $t_{\rm T}$ ртутного термометра производится согласно равенству:

Основная поправка принимается из свидетельства термометра.

Поправка на температуру выступающего столбика ртути вводится к показаниям только лабораторных и образцовых термометров в тех случаях, когда при измерении часть ртутного столбика намного выступает из защитной гильзы, а измеряемая температура значительно превышает температуру окружающего воздуха.

где *n* – число градусов в выступающей части ртутного столбика;

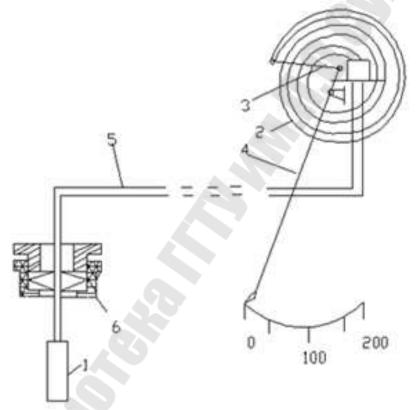
α_в – температурный коэффициент видимого расширения ртути в стекле, К⁻¹;

 $t_{\rm B}$ – средняя температура выступающего столбика ртути, °C.

Поправка на смещение положения нулевой точки термометра периодически определяется в процессе эксплуатации с помощью термостата плавления льда.

В случае отклонения положения нуля от указанного в свидетельстве (после нагрева в термостате) эта поправка вычисляется по формуле:

где и - температуры, соответствующие положению нулевой точки термометра по свидетельству (после нагрева в термостате) и после очередной поверки нуля в эксплуатации, °С.


Манометрические термометры

- Принцип действия манометрических термометров основан на изменении давления газа, жидкости или насыщенного пара в замкнутом объеме в зависимости от температуры.
- Являются промышленными показывающими и самопишущими приборами, предназначенными для измерения температуры в диапазоне до 600° С.
- Класс точности их 1-2,5.
- В зависимости от заключенного в термосистеме рабочего вещества манометрические термометры разделяются на:
- - газовые
- - жидкостные
- - конденсационные

Схема показывающего манометрического термометра

Термосистема прибора, заполненная рабочим веществом, состоит из термобаллона 1, погружаемого в измеряемую среду, манометрической трубчатой пружины 2, воздействующей посредством тяги 3 на указательную стрелку 4, и капилляра 5, соединяющего пружину с термобаллоном.

- **Тазовые** манометрические термометры применяются для измерения температур в интервале от -200 до 600 °C. В качестве наполнителя используется гелий (при низких температурах), азот (при средних температурах) или аргон (при высоких температурах). Класс точности газовых термометров 1 или 1,5. Они могут выпускаться показывающими или самопишущими.
- Жидкостные манометрические термометры используются для измерения температур в интервале от -50 до 300 °C. В качестве термометрических жидкостей используется органическая полиметилсилоксановая жидкость ПМС-5 при низких температурах, при высоких жидкость ПМС-10.

Κουπους οιικουμιο ΜουοΜοτρικύος και τορμομοτρικ

Установка и поверка манометрических термометров

- При установке манометрических термометров в трубопроводах термобаллон помещается в середину потока. Термобаллон газовых и жидкостных термометров может занимать любое положение, а конденсационных вертикальное (капилляром вверх) или слегка наклонное. При измерении температуры среды, находящейся под большим давлением, термобаллон устанавливается в защитной гильзе с заполнителем.
- Манометрические термометры поверяются на рабочем месте или в лаборатории. Поверка приборов в лаборатории производится в термостатах с электрообогревом, а на рабочем месте при помощи сосудов с нагретой и холодной жидкостью (водой или маслом), смешиваемой до получения нужных температур. Для поверки в диапазоне температур 0-300 °C применяется образцовый ртутный термометр 2-го разряда, в диапазоне 300-600 °C образцовый термометр сопротивления. Количество поверяемых отметок выбирается не менее трех в начале, середине и конце шкалы.

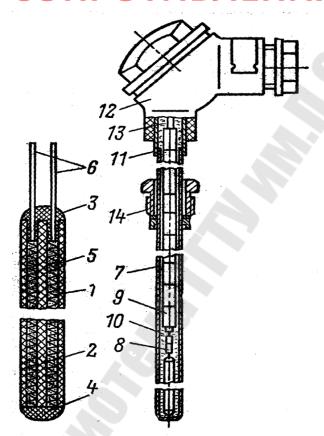
ТЕРМОМЕТРЫ СОПРОТИВЛЕНИЯ

Основан на свойстве металлических проводников изменять в зависимости от нагрева их электрическое сопротивление.

Диапазон измерения – от -200 до +650 0 С

ОСНОВНЫЕ СВОЙСТВА ТЕРМОМЕТРОВ СОПРОТИВЛЕНИЯ

- Достоинства:
- - высокая точность измерения;
- ●- возможность получения приборов с безнулевой шкалой на узкий диапазон температур;
- легкость осуществления автоматической записи и дистанционной передачи показаний;
- ●- возможность присоединения к одному вторичному прибору при помощи переключателя нескольких однотипных термометров.
- Недостаток:
- •- потребность в постороннем источнике тока.


- Металлы, применяемые для изготовления обмотки термометров сопротивления, должны обладать:
- •- устойчивостью при нагревании, в частности однозначностью зависимости сопротивления от температуры и стойкостью проводника против коррозии, обеспечивающими надежность измерения;
- ●- высоким и по возможности постоянным температурным коэффициентом электрического сопротивления, дающим высокую чувствительность прибора и линейное изменение сопротивления проводника от температуры;
- большим удельным сопротивлением, позволяющим изготовлять термометры малых

12221A12

Типы термометров сопротивления:

- платиновые
- медные
- полупроводниковые

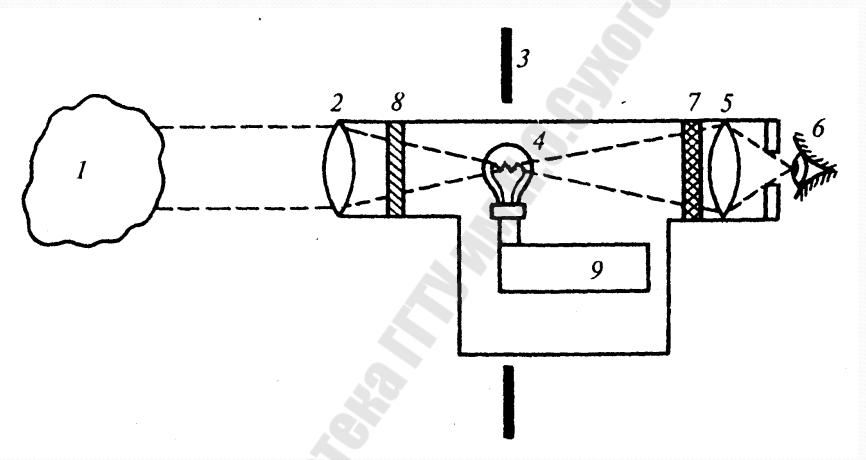
УСТРОЙСТВО ТЕРМОМЕТРОВ СОПРОТИВЛЕНИЯ

1 - платиновая спираль, 2 - многоканальная фарфоровая трубка, 3, 4 – пробки, 5 – керамический порошок, 6 - выводные провода, 7 - защитный чехол, 8, 9 - фарфоровые бусы, 10 - окись алюминия, 11 - стальная втулка, 12 - водозащищенная бакелитовая головка, 13 - герметизирующая мастика, 14 - штуцер

Пирометры работают по принципу измерения излучаемой нагретыми телами энергии, зависящей от температуры этих тел.

Диапазон измерений - от 300 до 6000 °C.

Классификация по принципу действия:

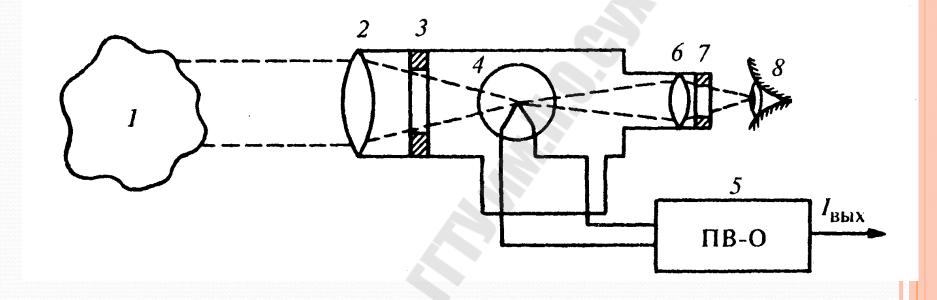

- Монохроматические;
- Полного излучения;
- Частичного излучения;
- Спектрального отношения.

- Отношение спектральной энергетической яркости любого источника теплового излучения к спектральной энергетической яркости абсолютно черного тела при одной и той же длине волны и температуре называется спектральным коэффициентом излучения (спектральная степень черноты).
- Полная (интегральная) энергетическая яркость тела при температуре может быть определена по спектральной энергетической яркости при интегрировании по всему диапазону длин волн
- Отношение полной энергетической яркости любого источника теплового излучения к полной энергетической яркости абсолютно черного тела при той же температуре называется полным коэффициентом излучения (интегральной степенью черноты):

Монохроматические пирометры

- Монохроматические пирометры (иногда называют оптическими или визуальными) воспринимают излучение в столь узком диапазоне длин волн, что оно считается монохроматическим (обычно это излучение красной части спектра с λ=0,65 мкм).
- Уравнение Планка:

Яркостной температурой называется условная температура реального нечерного тела, численно равная такой температуре абсолютно черного тела, при которой спектральные энергетические яркости абсолютно черного тела при температуре и реального тела при температуре и реального тела

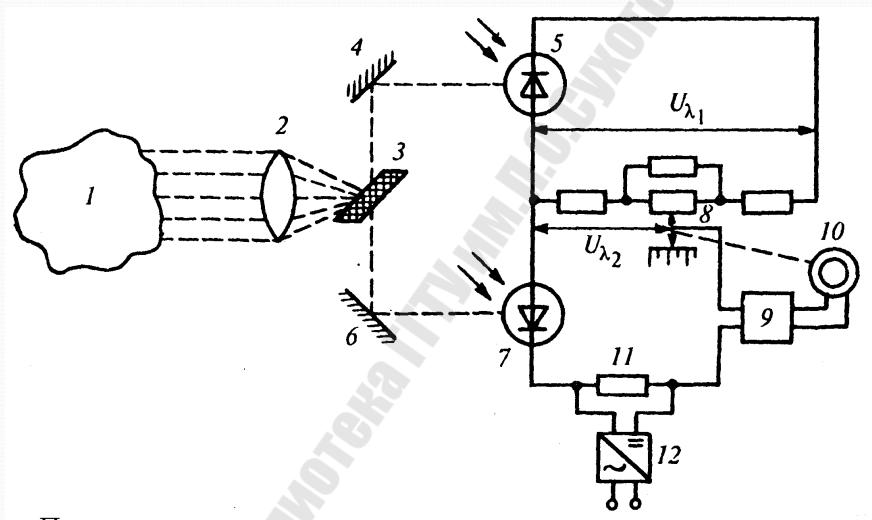


Принципиальная схема квазимонохроматического пирометра с исчезающей нитью накала: 1 – объект измерения; 2 – объектив; 3 – плоскость фокусирования; 4 - пирометрическая лампа; 5 окуляр; 6 – наблюдатель; 7 – красный светофильтр; 8 – поглощающее стекло; 9 – электронный блок

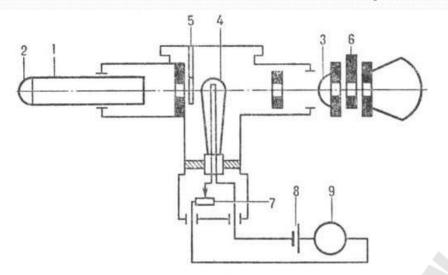
Пирометры полного и частичного излучения

Пирометры полного излучения (обычно называются радиационными) воспринимают излучение в столь широком спектральном интервале, что зависимость интегральной энергетической яркости от температуры с достаточной точностью описывается законом Стефана-Больцмана, связывающим энергию излучения абсолютно черного тела с его температурой.

Радиационной температурой называется условная температура реального тела, численно равная такой температуре абсолютно черного тела, при которой интегральные энергетические яркости реального и абсолютно черного тела равны.

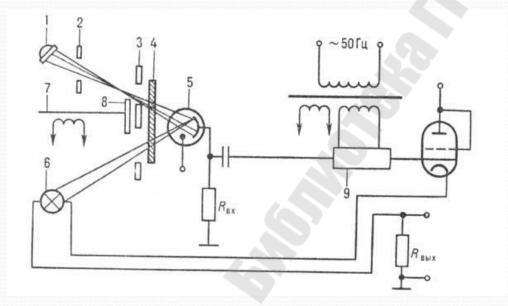


Принципиальная схема пирометра полного излучения с батареей: 1 — объект измерения; 2 — объектив телескопа;

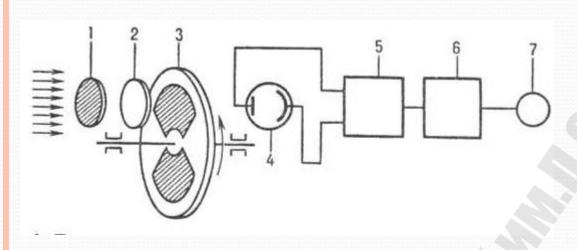

3, 7 — диафрагма; 4 — термобатарея; 5 — вторичный измерительный преобразователь ПВ-О; 6 — окуляр; 8 - наблюдатель

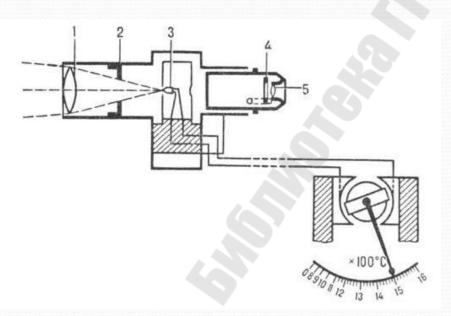
Пирометры спектрального отношения

- Пирометр, действие которого основано на использовании зависимости от температуры тела отношения спектральной энергетической яркости для двух фиксированных длин волн, называется пирометром спектрального отношения (цветовым).
- Цветовой температурой называется условная температура реального тела численно равная такой температуре абсолютно черного тела, при которой отношение спектральных энергетических яркостей абсолютно черного тела при длинах волн и равно отношению спектральных яркостей при тех же длинах волн реального тела с температурой .



Принципиальная схема пирометра спектрального отношения: 1 – объект измерения; 2 – объектив; 3 – фильтр; 4, 6 – зеркало; 5, 7 – фотоэлементы; 8 – реохорд; 9 – усилитель; 10 – реверсивный двигатель; 11 – резистор; 12 – стабилизатор


Пирометры полного излучения:


- 1 линза
- 2 диафрагма
- 3 приёмники излучения
- 4 -окуляр
- 5 светофильтр

Фотоэлектрический пирометр:

- 1 объектив
- 2, 3 диафрагмы
- 4 светофильтр
- 5 фотоэлемент
- 6 лампа
- 7 модулятор света
- 8 заслонка
- 9 усилитель

Пирометр спектрального отношения

- 1 защитное стекло
- 2 объектив
- 3 обтюратор с красным и синим светофильтрами
 - 4 фотоэлемент
 - 5 усилитель
- 6 логорифмическое устройство
 - 7 милливольтметр

Пирометр полного излучения:

- 1 линза
- 2 диафрагма
- 3 приёмник излучения
- 4 -окуляр
- 5 светофильтр

ИЗМЕРЕНИЕ ДАВЛЕНИЯ И РАЗРЕЖЕНИЯ

Давление – широкое понятие, характеризующее нормально распределенную силу, действующую со стороны одного тела на единицу поверхности другого.

Единица измерения давления в системе СИ – Паскаль (Па), равный давлению, создаваемому силой в олин ньютон лействующей на площаль в

Единицы KTC/M² (MM MM DT. ктс/см² Бар Πa измер вод. ст.) CT. 10^{-5} 1,0197•10 7,5006·10⁻³ 1 **Π**a 0,10197 10^{5} 1,0197 104 1 Бар 1,0197 750,06 1 кгс/см² 9,8066•104 0,98066 10^{4} 735,56 1 кт с/м² (мм 0,98066 10-4 10^{-4} 9,8066 7,3556•10-2 вод. ст.) 1,3332•10⁻³ 1,3595•10⁻³ 133,32 13,595 I MM pt. ct.

O,

При измерениях различают следующие виды давления:

- абсолютное
- избыточное
- вакуумметрическое

Под абсолютным давлением понимают полное давление, которое равно сумме атмосферного давления $p_{\rm at}$ и избыточного p_u :

Понятие вакуумметрического давления вводится при измерении давления ниже атмосферного:

Средства измерения, предназначенные для измерения давления и разности давлений, называются манометрами.

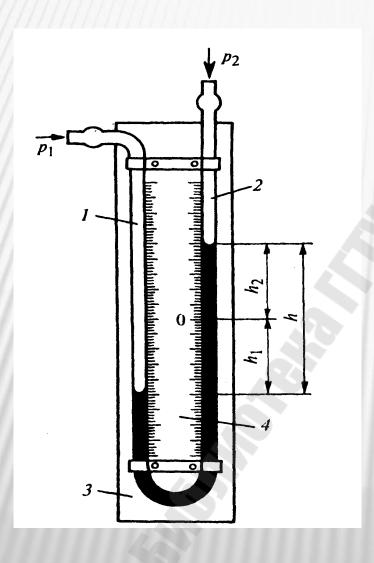
Подразделяются на:

- барометры
- манометры избыточного давления
- вакуумметры
- манометры абсолютного давления

Манометры, предназначенные для измерения давления или разрежения в диапазоне до 40 кПа (0,4 кгс/см²), называются напоромерами и тягомерами.

Дифференциальные манометры применяются для измерения разности давлений.

В зависимости от принципа, используемого для преобразования силового воздействия давления на чувствительный элемент в показания или пропорциональные изменения другой физической величины, средства измерения давления разделяются на:


- жидкостные
- деформационные
- электрические
- ионизационные
- тепловые
- грузопоршневые

ЖИДКОСТНЫЕ МАНОМЕТРЫ И ДИФМАНОМЕТРЫ

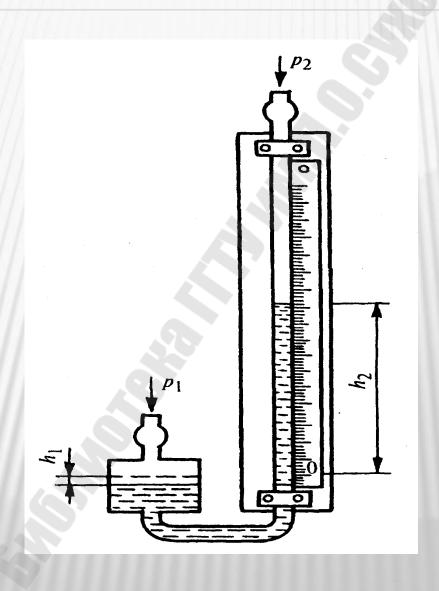
В жидкостных манометрах измеряемое давление или разность давлений уравновешивается гидростатическим давлением столба жидкости.

Двухтрубные жидкостные манометры

1, 2 – вертикальные сообщающиеся стеклянные трубки;

3 - основание;

4 – шкальная пластина


Столб жидкости высотой h, м, уравновешивает разность давлений в Π а:

где ρ – плотность рабочей жидкости, кг/м³;

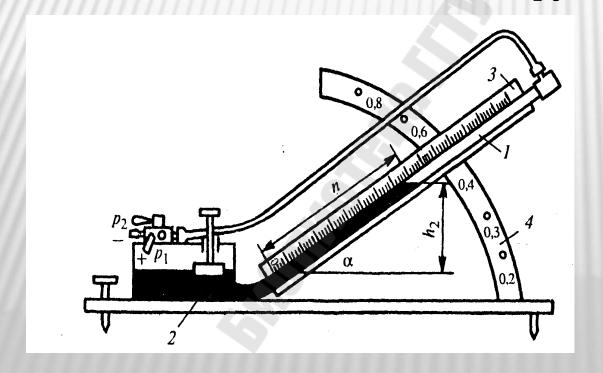
g – местное ускорение свободного падения, м/с² В качестве рабочей жидкости используются вода, ртуть, спирт, трансформаторное масло.

Функции чувствительного элемента, воспринимающего изменения измеряемой величины, выполняет рабочая жидкость, выходной величиной является разность уровней, входной – давление или разность давлений.

Однотрубные манометры

У однотрубного манометра одна трубка заменена широким сосудом, в который подается большее из измеряемых давлений.

Поскольку объем жидкости, вытесненный из широкого сосуда, равен объему жидкости, поступившему в измерительную трубку


$$h_1F = h_2f$$
, $h_1 = h_2f/F$

где f, F – площади поперечного сечения измерительной трубки и широкого сосуда.

МИКРОМАНОМЕТРЫ

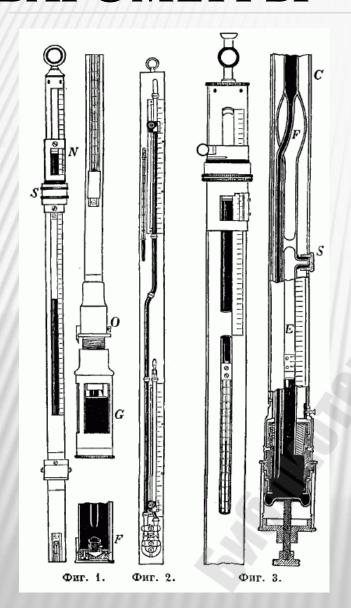
Используются для измерения давления и разности давлений до 3 кПа (300 кгс/м²), являются разновидностью однотрубных манометров и снабжены специальными приспособлениями либо для уменьшения цены деления шкалы, либо для повышения точности считывания высоты уровня за счет использования оптических или других устройств.

- измерительная трубка;
- 2 сосуд;
- 3 кронштейн;
- 4 сектор

Исходя из равенства объемов рабочей жидкости, вытесненной из широкого сосуда 2 в измерительную трубку 1, получаем:

$$h_{\mathbf{L}}F = \mathbf{r}f_{\mathbf{L}}h_{\mathbf{L}} = \mathbf{r}f_{\mathbf{L}}F$$

вня в широком сосуде;
 f, F – площади поперечного сечения широкого


сосуда и трубки.

Поскольку

$$h_2 = n \sin \alpha$$

$$p_2 - p_1 = \rho g(h_1 - h_2) = \rho g n (f / F + \sin \alpha)$$

БАРОМЕТРЫ

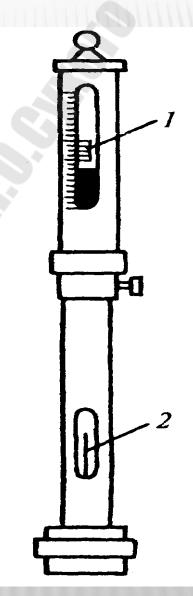


Схема чашечного ртутного барометра 1 – нониус; 2 – термометр

КОМПРЕССИОННЫЕ МАНОМЕТРЫ

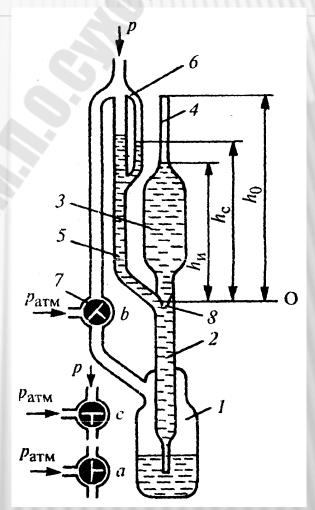
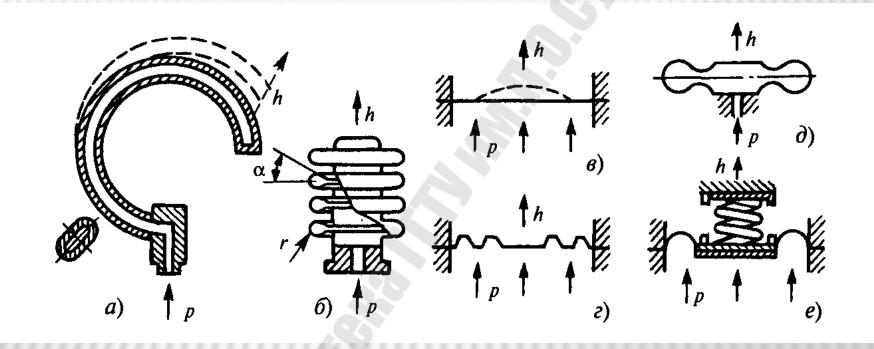


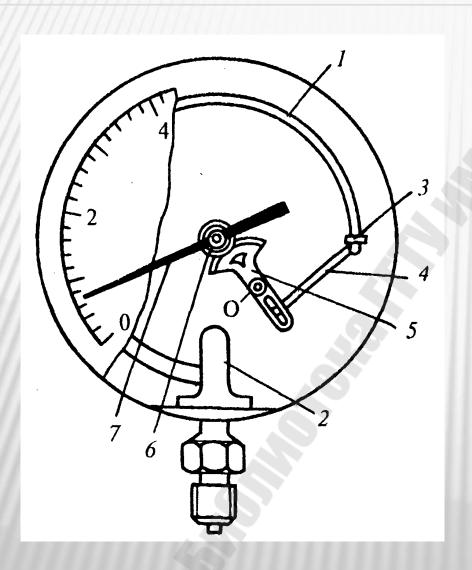
Схема компрессионного манометра:


1 – резервуар; 2, 5 – трубки; 3 – измерительный баллон; 4 – глухой измерительный капилляр; 6 – капилляр сравнения; 7 – трехходовой кран; 8 – устье баллона

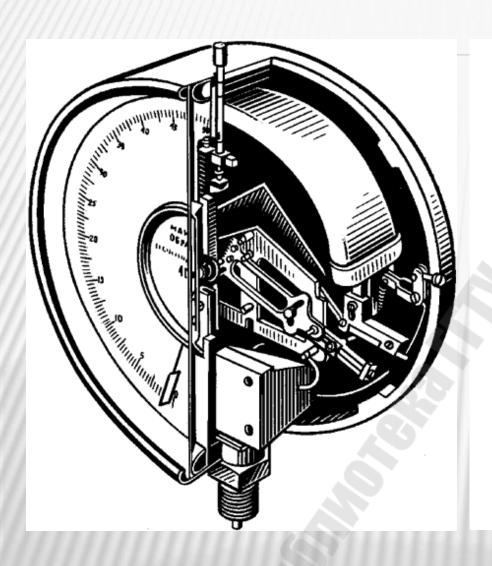
ДЕФОРМАЦИОННЫЕ МАНОМЕТРЫ И ДИФМАНОМЕТРЫ

Используется зависимость деформации чувствительного элемента или развиваемой им силы от измеряемого давления.

УПРУГИЕ ЧУВСТВИТЕЛЬНЫЕ ЭЛЕМЕНТЫ

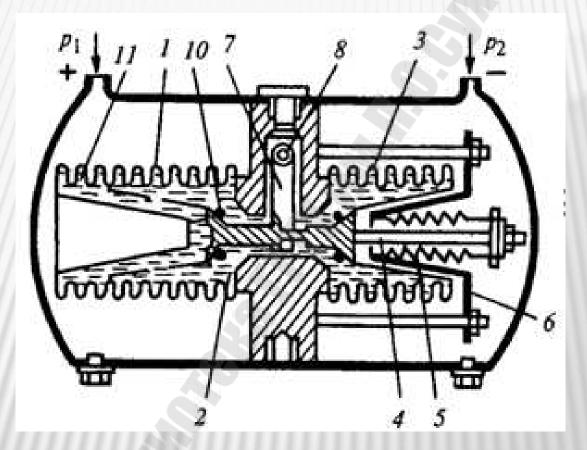


a – трубчатые пружины; б – сильфоны; e, ϵ – плоские и гофрированные мембраны; d – мембраные коробки; e – вялые мембраны с жестким центром


В соответствии с используемым в приборах типом рассмотренных чувствительных элементов деформационные манометры подразделяются на:

пружинные сильфонные мембранные

ПРУЖИННЫЕ МАНОМЕТРЫ



1 – одновитковая
трубчатая пружина;
2 – держатель; 3 – пробка;
4 – поводок; 5 – зубчатый сектор; 6 – шестерня;
7 – стрелка

СИЛЬФОННЫЕ МАНОМЕТРЫ

1 – рабочий сильфон; 2 – кремнийорганическая жидкость; 3 – внутренняя полость сильфона; 4 – шток; 5 – пружины; 6 – неподвижный стакан; 7 – рычаг; 8 – торсион; 9 – ось; 10 – резиновые кольца; 11 – гофры

МЕМБРАННЫЕ МАНОМЕТРЫ

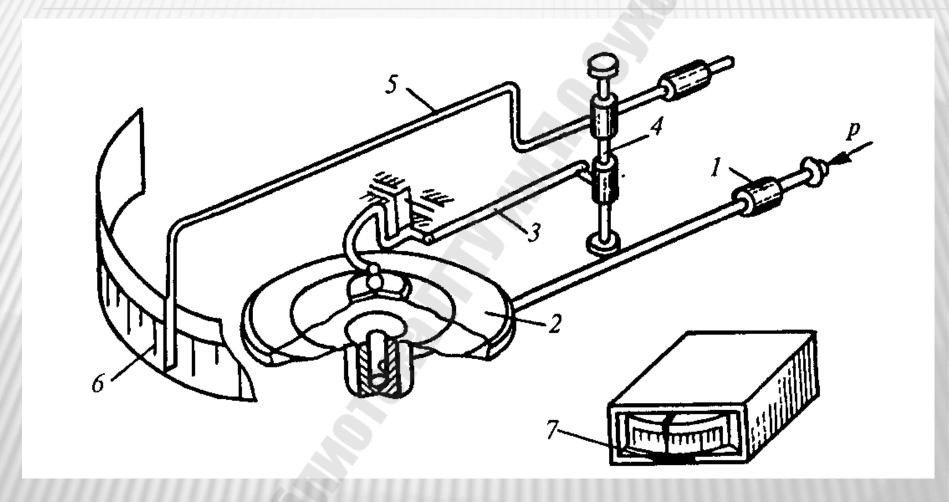
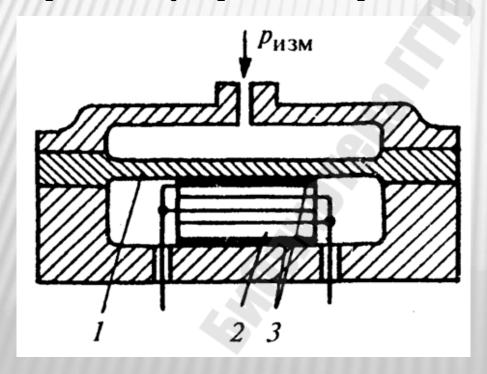


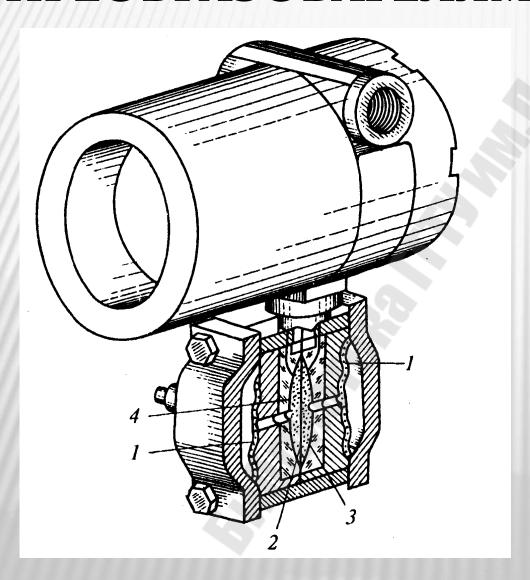
Схема и внешний вид профильного мембранного напоромера НМП: 1 – штуцер; 2 – мембранная коробка; 3 – система рычагов и тяг; 4 – ось; 5 – показывающая стрелка; 6 – профильная шкала; 7 – корректор



МАНОМЕТРЫ КОСВЕННОГО ТИПА

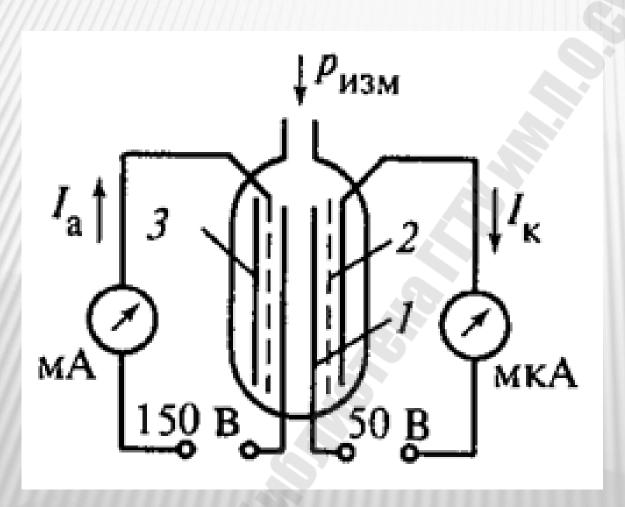
В манометрах косвенного типа измеряемая величина, связанная с давлением, преобразуется в электрический сигнал, поэтому датчики этих манометров называют преобразователями.

ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАНОМЕТРЫ


Принцип действия манометров этого типа основан на пьезоэлектрическом эффекте, сущность которого состоит в возникновении электрических зарядов на поверхности сжатой кварцевой пластины, которая вырезается перпендикулярно электрической оси кристаллов кварца.

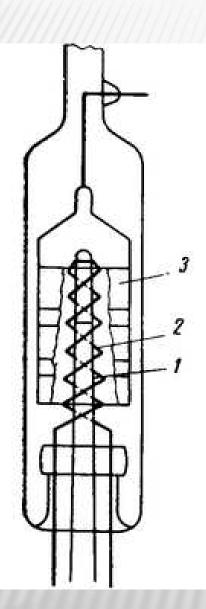
- 1 мембрана;
- 2 кварцевые пластины;
- 3 металлизированные плоскости

МАНОМЕТРЫ С ЕМКОСТНЫМИ ПРЕОБРАЗОВАТЕЛЯМИ


1 – разделительные мембраны;

2 – чувствительная мембрана;

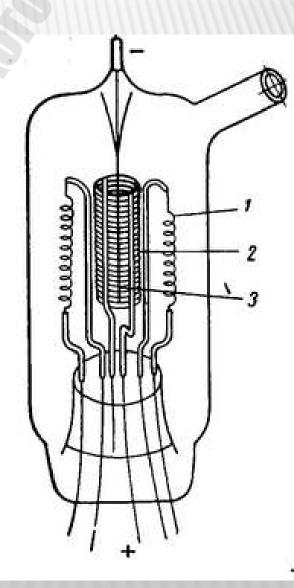
3, 4 – неподвижные обкладки конденсаторов



ИОНИЗАЦИОННЫЕ МАНОМЕТРЫ

- 1 катод;
- 2 анодная сетка;
- 3 цилиндрический ионный коллектор

Для измерения давления в диапазоне 10⁻¹...10⁻⁸ Па

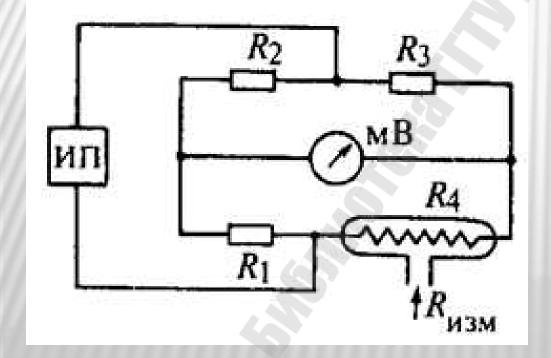


Ионизационный манометр ЛМ-2:

1 — катод; 2 — сетка; 3 — коллектор

Лампа ионизационного манометра Байарда-Альперта с обраиченным расположением электродов:

1 — нить накала; 2 — положительно заряженная электрическая сетка; 3 — коллектор нонов



ТЕПЛОВЫЕ МАНОМЕТРЫ

В тепловых манометрах используется зависимость молекулярной теплопроводности газа от давления пара при высоком вакууме. Датчик любого теплового манометра представляет собой колбу с нитью, нагреваемой электрическим током.

Для измерения давления в диапазоне 1..10⁴ Па

По способу измерения температуры нити тепловые манометры делятся на два типа:

- манометры сопротивления;
- термопарные.

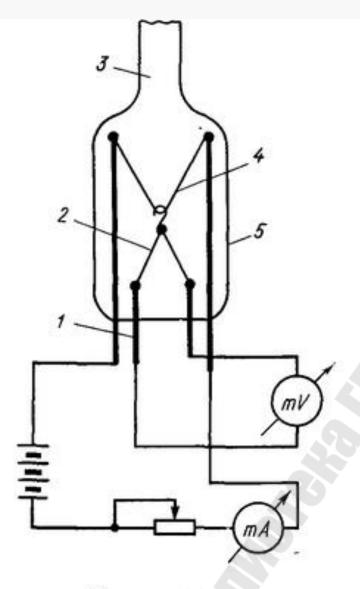
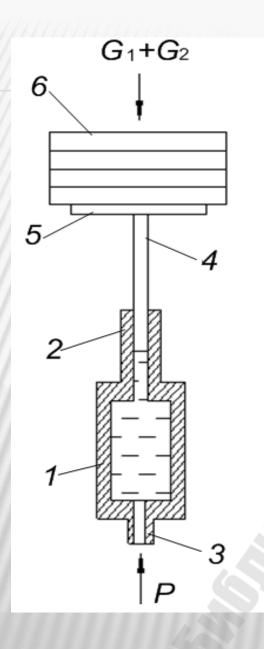


Схема термопарного манометра-

1 — ввод питания. 2 — термопар і, 3 — присоединительная трубка, 4 — нить; 5 — колба



ГРУЗОПОРШНЕВЫЕ МАНОМЕТРЫ

Являются образцовыми приборами, так как обладают высокой чувствительностью и точностью, и используются для поверки и градуировки деформационных манометров.

Принцип действия грузопоршневого манометра заключается в уравновешивании давления измеряемой среды на свободно перемещающийся в цилиндре поршень силой, создаваемой калиброваным грузом. По массе этого груза определяют действующее на поршень давление.

- 1 сосуд;
- 2 цилиндрическая колонка;
- 3 соединительный штуцер;
- 4 стальной поршень;
- 5 тарелка;
- 6 грузы

Воспринимаемое поршнем давление при равновесии системы определяется по формуле:

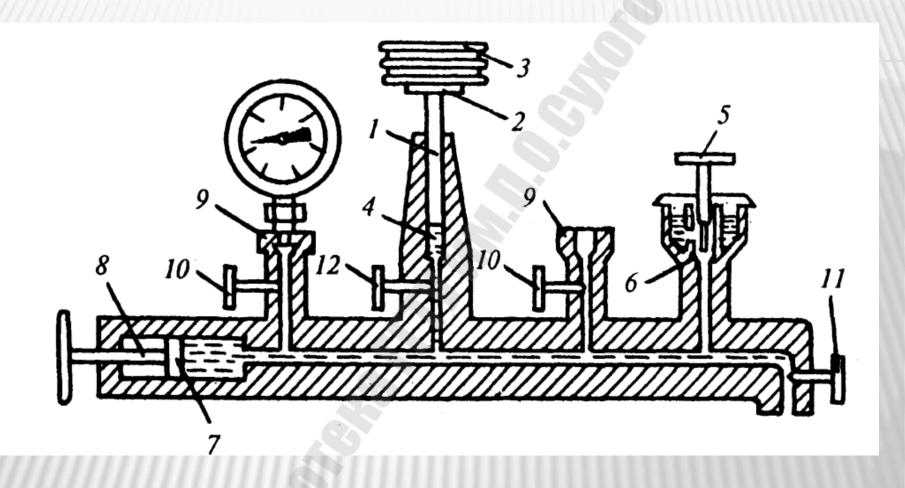
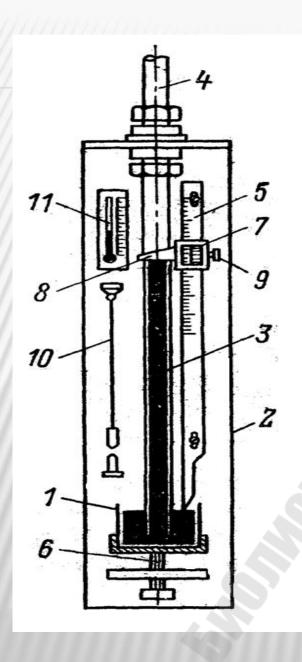


Схема грузопоршневого манометра МП-60: 1 – поршень; 2 – тарелка; 3 – грузы; 4- цилиндр; 5 – вентиль; 6 – резервуар; 7 - поршень винтового пресса 8; 9 – стояк; 10-12 – запорные вентили


ВАКУУММЕТРЫ И МАНОВАКУУММЕТРЫ

Вакуумметры применяются для измерения значительного вакуумметрического давления (вакуума) в конденсаторах паровых турбин, во всасывающих линиях насосов и т. п.

Мановакуумметры применяются в тех случаях, когда измеряемое давление среды может принимать значение выше или ниже атмосферного. Эти приборы имеют двустороннюю шкалу.

По своему устройству вакуумметры и мановакуумметры бывают:

- жидкостные (ртутные);
- деформационные (трубчато-пружинные и сильфонные).

Общий вид ртутного вакуумметра

- 1 стеклянный подвижный сосуд с ртутью;
- 2 деревянное основание;
- 3 стеклянная измерительная трубка;
- 4 трубка;
- 5 миллиметровая шкала;
- 6 ходовой винт;
- 7 подвижная каретка с нониусом;
- 8 угольник;
- 9 кремальера;
- 10 отвес;
- 11 ртутный термометр.

