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Abstract
It is shown that applying the nonperturbative method of varia­

tional perturbation series allows us to considerably reduce the renor­
malization scheme dependence in QCD calculations.

1 Introduction
Perturbation theory (PT) is commonly used in theoretical calculations in 
QCD. In practices one usually applies the popular MS renormalization 
scheme (RS). Physical quantities are independent of the particular choose 
of the RS. However, in real calculations this dependence is appeared due 
to a inevitable truncation of perturbation series. The RS-dependence is a 
source of essential theoretical uncertainties which become to be large espe­
cially at low energy scale. At low energy experimental data are sensitive to 
important nonperturbative characteristics and, therefore, theoretical un­
certainties disturb to investigate nonperturbative effects accurately. There 
are no general principles allowing us to decide which scheme is preferable 
and it is necessary to consider the stability results obtained with respect 
to the choose of RS.

Another way is a modification of the perturbative component of the 
QCD calculations. The point is that the initial PT series, or more pre­
cisely, its finite part after renormalization, is not the final product of the 
theory but admits of a considerable modification. In particular, it is well 
known that the renormalization group method [1] allows one to mod­
ify a perturbative expansion in accordance with the general principle of 
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renormalization invariance, thus improving the properties of the series in 
the ultraviolet region. As to the infrared region, where the perturbative 
invariant charge possesses unphysical singularities, the RG-modified PT 
series remains unstable. In the analytic approach in QCD proposed by 
D.V. Shirkov and coauthor of this paper in [2] the trouble with unphysical 
singularities has found its possible resolution. It has been demonstrated 
that the framework of the analytic approach the RS-dependence can be 
essentially reduced [3, 4, 5, 6]. Others advantages of analytic perturbation 
theory has been recently emphasized in [9, 12, 11, 10].

Here to investigate the RS-dependence we use the nonperturbative 
method of constructing the so-called floating or variational series in quan­
tum chromodynamics suggested in [7, 8].

2 Variational perturbation theory and ana­
lyticity

In the usual version of perturbation theory, the total action corresponding 
to a physical system is split into a free part and a part describing the inter­
action. The latter is treated as a perturbation, and the coupling constant 
entering into it is viewed as the small expansion parameter. As a rule, 
this treatment leads to asymptotic series which, albeit not “well behaved,” 
nevertheless widely used in physics and allow useful information about the 
system in question to be extracted for weak coupling. As the interaction 
constant grows, the perturbation theory becomes worse and worse. The 
reason for this is understood: now the treatment of the interaction term as 
a perturbation of the free system is no longer adequate, since the physical 
system in question has properties far from those of a free system. In order 
to have a method of performing calculations in this case, it is necessary 
to split the total action in different way, such that the new “interaction 
term” can be treated as a perturbation not only when the coupling con­
stant is small, but for a wider range of its value. Of course, here one must 
worry about whether this procedure, which is similar to ordinary pertur­
bation theory, allows the possibility of calculating a main contribution and 
corrections.

How is it possible to seek a functional which can be used as a perturba­
tion with more justification than the usual interaction term? The method 
proposed in [7, 8] based on the idea of variational perturbation theory 
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(VPT), which in the case of QCD leads to a new small expansion parame­
ter [7, 8] (see also reviews [13, 14]). Within this method, a quantity under 
consideration can be represented in the form of a series, which is different 
from the conventional perturbative expansion and can be used to go be­
yond the weak-coupling regime. This allows one to deal with considerably 
lower energies than in the case of perturbation theory [15, 16, 17].

Analysis of the structure of this variational perturbation series shows 
that it can be organized in powers of the new small parameter a if the 
standard coupling constant g is related to a by 

where A = 52/(4tt)2 = ols!^ and C is a positive constant. As follows from 
(1), at any values of the coupling constant g, the new expansion parameter 
a obeys the inequality

0 < a < 1. (2)

The positive parameter C plays the role of an auxiliary parameter of a 
variational type,which is associated with the use of a floating series. The 
original quantity which is approximated by this expansion does not depend 
on the auxiliary parameters C; however, any finite approximation depends 
on it on account of the truncation of the series.

The variational parameter C can be defined, if one takes into account, 
as in the Shirkov-Solovtsov analytic approach, the Kallen-Lehmann an­
alyticity. As it has been demonstrated in [18, 19] its value is changing 
from order to order, in accordance with the phenomenon of induced con­
vergence.1 Taking into account the order O(ak) for Ck we have

C3 = 3.5, 04 = 9.2, 05 = 19.1, Се = 34.1, and C7 = 55.6. (3)

The increase of Ck with the oder to of the expansion is explained by the 
necessity to compensate for the higher order contributions.

It is interesting that these values agree well with values of the param­
eter coming from the meson spectroscopy [8]. The parameter C can be 
defined from the condition that the renormalization group /З-function at 
large enough values of the coupling constant behaves as ^(A) ~ —A. Such

xIt has been observed empirically in [25, 26] that the results seem to converge if the 
variational parameter is chosen, in each order, according to some variational principle. 
This induced-convergence mechanism is also discussed in [27].
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a behaviour corresponds to the singular infrared behavior of the running 
coupling constant A(Q2) ~ Q~2 and leads to the linear growth of the non- 
relativistic static quark-antiquark potential at large distances V(r) ~ r.

3 Renormalization scheme dependence
In QCD it is important to determine “simplest” objects which allow one to 
check direct consequences of the theory without using model assumptions 
in an essential manner. Comparison of theoretical results for these objects 
with experimental data allows us to justify transparently the validity of 
basic statements of the theory, and make some conclusions about complete­
ness and efficiency of the theoretical methods used. Some single-argument 
functions which have a straightforward connection with experimentally 
measured quantities can play the role of these objects. A theoretical de­
scription of inclusive processes can be expressed in terms of functions of 
this sort. Let us mention among them moments Mn(Q2) of the structure 
functions in inelastic lepton-hadron scattering and the hadronic correlator 
II(s) (or the corresponding Adler D-function), which appear in the pro­
cesses of e+e~ annihilation into hadrons or the inclusive decay of the r 
lepton.

Consider here as an example the D-function

D(Q)-~Q d^~Q JQ dS(s + Q2)2 (4)

Separating the QCD correction d(Q2) we represent D(Q2) in the form

W) = з£$2[1 + <Ш2)], (5)

where Qf denotes the electric charge of the quark with the flavor f. The 
expression for d(Q2) with the running coupling has the form:

dPT(Q2) = W)[ 1 + + d^S2^2) + ...], (6)
where 5{ — а^/тг and the index i denotes the RS in which one performs 
calculations.

In MS-scheme the perturbative coefficients are [20, 21]

= 1.986-0.115/, (7)

d^ = 18.244 - 4.216/ + 0.086/2 - ■ (8)
3 Er Q2'
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The invariant charge is determined as a solution of the renormalization 
group equation with the three-loop /3-function [22]

+ + (9)

where

bl

and

= „-? 38 jg 2857 5033, , 325,,
3 Л 2 18 ' + 54 ' ’

In passing from one renormalization scheme to another, RS —» RS', the 
coupling constant transforms as follows

5 -*6' = 5(1 + vi5 + v262 + ...) (10)

and the coefficients dk —> d'k .
In the three-loop level the QCD correction is

d = 5(1 + did + d2^ - (11)

A change in the RS modifies the values of the expansion coefficients. The 
coefficients b and bi are RS independent in the class of mass and gauge 
independent schemes and the three-loop /З-function coefficient b2 and the 
expansion coefficients di and d2 in (6) depend on the choice of the renormal­
ization scheme. Under the scheme transformation (10), they are changing 
in the following way

b2 = b2 — v2 - bivi + v2,
d[ = di - vi, (12)
d2 = d2 — 2(di — vjvi - v2 .

Thus, each term in representation (6) undergoes a transformation, and 
we thus obtain the new function

d! = 5'(1 + d'J' + d'25'2). (13)
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where the coupling 6' is evaluated with the new /^-function, with the three- 
loop coefficient 62 replaced by the primed one 6'2.

There exist two RS invariants [23]

b Q2
A = 2 ln Д2 “ dl > P2 = 62 + d2 ~ Ькк - d2. (14)

To obtain the invariant charge in arbitrary scheme we use the equation

+ (15)

where
<5

(І + Ь^Ц + ^ + ^) • (16)
0

Although there are no general arguments to prefer a certain renor­
malization scheme from the start, we nevertheless can define a class of 
“natural” schemes, which look reasonable at the three-loop level that we 
consider. A condition for selecting a class of acceptable schemes has been 
proposed in [24]. One should restrict oneself to the schemes, where the 
cancellations between different terms in the second scheme invariant (14) 
are not too large. Quantitatively, this criterion can be related to the can­
cellation index

C = 1—г (1^2, + |с?21 + d? + |di|&i) • (17)
ІР2І

For the optimal RS based on the principle of minimal sensitivity (PMS) 
[23, 27] the value of cancellation index is Cpms — 2. We will use this value 
as a boundary for the sufficiently narrow class of natural schemes taking

Стах — 2 (18)

4 RS dependence in VPT
Consider the problem of the RS dependence within the VPT method and 
compare results obtained with the PT. First of all note, the value of pa­
rameter is not too sensitive to the RS-dependent three-loop ^-function 
coefficient b2.
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The third-order VPT /З-function in terms of the parameter a has the 
form

P — — 7^ 7n~L—w-i-----to (1 + ^ia + ^2 <2 2 + k^a3 + k^a4 + k^a5), (19)С2 (2 + a)(1 — ar

where

ki — - , k2 — 12 + ,
2 PoC

, _я^63 &
4 4 + 2 /30C + faC2 ’

k3 = ^Tc^ 
A Pob

k - 147 I no I 21
5 2 + 98 faC + 2 Z?oC2 •

(20)

Thus, in a new scheme we have

(21)

84diC + 15C2 + 16d2 4 224diC + 144d2 + 21C2 J-I--------------—----------- a* ----------------—------------- a°

where we take C = Cy = 55.59 and function Ф(<5, b2) in (15) is now deter­
mined as

a

Фурр 1 
^vpt(x) dx. (22)

1

0

Consider the Drell ratio R(s) which is defined as the ratio of total
cross-sections

. a(e+e —► hadrons) 
^(s) = —------гт a(e+e —>--------) (23)

and related to the D-function as follows
ds

(s + Q2)2 Я(«) (24)

Separating in R(s) the QCD correction r(Q2) as for the D-function in 
Eq. (5) one can write down the relations between the correction to the 
Euclidean quantity, d{Q2\ and Minkowskian one, r(s),

d(Q2) = Q2 [ 
Jo

ds

(7+W r(s) (25)
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and

1 f3+te dz r^=~^L.~d(~zV (26)

The integration contour in Eq. (26) lies in the region of analyticity of the 
integrand and encircles the cut of d(—z) on the positive real z axis.

Expressions (25) and (26) can be rewritten in terms of an effective 
spectral function pefF(a)

and [28]

Ф) = ; (28)

The effective spectral function ^(c) is determined from the discontinuity 
of the function d(Q2} across the cut.

Figure 1: Plot the QCD corrections r(Q) calculated in the cases of per­
turbation theory (PT) and the variational perturbation theory (VPT) in 
two renormalization schemes H and MS with the same cancellation index 
Cr^2.
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The QCD contribution to the physical (RS-invariant) quantity R(s) in 
PT is

r = 5 [1 + r\b + гг^2] , (29)

where

П = di, r2 = d2 - • (30)
4o

To discuss the RS-independence, we consider, as in [3], two examples 
of RS's: the scheme H with the parameters rf — —3.2 and — 0 (the 
so-called’t Hooft scheme), and the second is the MS-scheme corresponding 
to the parameters rj48 = 1.64 and b^ = 4.47. From point of view the 
cancellation index criterion these schemes are close to each other and to 
the boundary cancellation index Ch — — Cpms — 2.

In Fig. 1, we plot the QCD correction r(Q2) as a function of Q2 for 
these two schemes. One can see a stable behavior for the whole interval of 
energies being practically scheme-independent.

5 Conclusions

We have found that the QCD contribution to the Drell ratio calculated 
within the VPT method turned out to be practically scheme-independent 
in a wide class of RS for the whole energy interval. In the variational 
perturbation theory, therefore, the three-loop level reached presently for 
a number of physical processes is practically invariant with respect to the 
choice of the renormalization prescription.
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