УДК 539.12

ПРИМЕНЕНИЕ ТЕХНИКИ ИНТЕГРАЛОВ МЕЛЛИНА–БАРНСА В ВЫЧИСЛЕНИЯХ ВКЛАДОВ В АНОМАЛЬНЫЕ МАГНИТНЫЕ МОМЕНТЫ ЛЕПТОНОВ

В. И. Лашкевич, О. П. Соловцова

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Используя технику интегралов Меллина–Барнса, получены точные аналитические выражения для вкладов в аномальные магнитные моменты лептонов L = e, m, t от диаграмм поляризации вакуума тремя лептонными петлями. Аналитические выражения получены как функции отношения квадрата масс: массы лептона в петле к массе внешнего лептона, $t = (m_l/m_L)^2$ во всей области $0 < t < \infty$, отдельно для t < 1 и t > 1, и, как было установлено, эти выражения представляют собой две ветви одной и той же аналитической функции.

Ключевые слова: интегралы Меллина–Барнса, квантовая электродинамика, аномальные магнитные моменты лептонов, поляризация вакуума лептонными петлями.

APPLICATION OF THE MELLIN–BARNES INTEGRALS TECHNIQUE IN CALCULATIONS OF CONTRIBUTIONS TO ANOMALOUS MAGNETIC MOMENTS OF LEPTONS

V. I. Lashkevich and O. P. Solovtsova

Sukhoi State Technical University of Gomel, the Republic of Belarus

Based on the Mellin-Barnes integral technique, exact analytical expressions are obtained for the contributions to the anomalous magnetic moments of leptons L = e, m, t from three lepton loops vacuum polarization diagrams. The corresponding analytical expressions are obtained as functions of the ratio of squared masses: the mass of the lepton in the loop to the mass of the external lepton, $t = (m_l/m_{L_l})^2$, in the entire region $0 < t < \infty$, separately for t < 1 and t > 1, and, as it was established, these expressions represent two branches of the same analytic function.

Keywords. Mellin–Barnes integrals, quantum electrodynamics, anomalous magnetic moments of leptons, vacuum polarization by lepton loops.

Теоретическое и экспериментальное изучение аномальных магнитных моментов лептонов $(g-2)_L$ на протяжении многих десятилетий и по настоящее время (см. обзоры [1, 2]) играет важную роль в развитии представлений о взаимодействии элементарных частиц и теории, их описывающей. Отклонение гиромагнитного отношения *g* дираковской частицы от значения 2 принято обозначать через безразмерную величину *a*, называемую аномальным магнитным моментом (AMM) частицы: n = 2(1+a). Впервые AMM электрона a_e был теоретически рассчитан в первом порядке теории возмущений по постоянной тонкой структуры *a* Ю. Швингером еще в 1948 г. [3] и соответствующее значение оказалось в блестящем согласии с имеющимся в то время экспериментальным значением $a_e^{3ксn}$. В настоящее время и экспериментальная точность, и точность теоретических расчетов достигли высочайшего уровня и широко обсуждается не сама величина AMM лептона, а отклонение (дискрепанс) между предсказаниями стандартной модели (CM) и прямыми измерениями AMM электрона и мюона. В настоящий момент дискрепанс составляет ~ 2,5 стандартных отклонений для электрона [4, 5] и ~ 4,2 стандартных отклонений для мюона

[6]. Такие большие отклонения могут свидетельствовать в пользу существования новых взаимодействий и проявления новой физики за пределами СМ. В связи с этим идет тщательная проверка теоретических основ и численных расчетов независимыми методами, а также планируется повышение экспериментальной точности.

Цель настоящей работы состоит в нахождении явных выражений для ряда вкладов в АММ лептонов, что дает возможность получить численные значения соответствующих вкладов с любой точностью и проверить имеющиеся численные оценки. В исследованиях мы используем технику интегралов Меллина–Барнса (МБ) – семейство интегралов в комплексной плоскости, подынтегральное выражение которых определяется произведением гамма-функций. Наши исследования можно рассматривать как продолжение работы [7], в которой были представлены выражения для вкладов в АММ от поляризации вакуума лептонными петлями. В работе [7] соответствующие выражения были применены для получения асимптотических выражений, параметром разложения в которых является отношение масс лептонов. Мы получили, что с помощью техники интегралов МБ можно получить и точные выражения.

1. Теоретические основы. Используя преобразование МБ, можно представить вклад от диаграммы поляризации вакуума с тремя лептонными петлями (рис. 1) в виде контурного интеграла в комплексной плоскости:

$$A_{2}^{(8)}(t) = \frac{1}{2\pi i} \left(-\frac{2\pi^{2}}{27} \int_{c-i\infty}^{c+i\infty} \frac{dz t^{-z}}{\sin^{2}(\pi z)} \times \right)$$

$$\times \left[\frac{(36+54z-29z^2-34z^3+5z^4+4z^5)(6+13z+4z^2)}{z^3(z+1)^2(z+2)^3(z+3)} + \frac{18\pi(6+13z+4z^2)(z-1)(-1-z+z^2)\cot(\pi z)}{z^2(z+1)(z+2)^2(2z+1)(2z-1)(z+3)} \right],$$
(1)

где t определяется как квадрат отношения масс лептонов.

Рис. 1. Диаграмма поляризации вакуума тремя лептонными петлями

Вычислить интеграл (1) можно с помощью теоремы Коши по вычетам. В левой полуплоскости первое слагаемое имеет полюса в точках z = 0, -1, -2, -3, a при z = -4, -5, ..., -n, ... все полюса будут второго порядка. Второе слагаемое в левой полуплоскости имеет полюса в точках z = 0, -1, -2, -3, -1/2, а при z = -4, -5, ..., -n, ... все полюса будут третьего порядка.

В правой полуплоскости первое слагаемое имеет только полюса второго порядка в точках z = 1, 2, 3, ..., n, Второе слагаемое имеет полюс в точке z = 1, а также при z = 2, 3, 4, ..., n, ... и все полюса будут третьего порядка.

2. Результаты. Суммируя все вычеты, получаем точные аналитические выражения, которые удобно представить в виде разложения по степеням логарифма:

$$A_2^{(8)}(t) = c_0(t) + c_1(t)\ln(t) + c_2(t)\ln^2(t) + c_3(t)\ln^3(t), \ t < 1;$$
(2)

$$A_2^{(8)}(t) = d_0(t) + d_1(t)\ln(t) + d_2(t)\ln^2(t), \qquad t > 1,$$
(3)

где

$$\begin{split} c_{0}(t) &= \frac{7627}{1944} + \frac{175}{18}t - \frac{54346}{151875}t^{2} + \frac{31168}{13505625}t^{3} - \frac{32}{15435}t^{4} - \frac{4\pi^{4}}{45}(1+2t^{2}) - \\ &- \frac{\pi^{2}}{3}f_{1}(t) + \left(\frac{12}{35} - \frac{4}{45}t\right)t^{4}\Phi\left(t,3,\frac{9}{2}\right) + f_{1}(t)\text{Li}_{2}(t) + f_{2}(t)\text{Li}_{3}(t) + 4\left(1+2t^{2}\right)\text{Li}_{4}(t); \\ c_{1}(t) &= \frac{61}{162} - \frac{\pi^{2}}{27} + \frac{136}{27}t - \frac{4\pi^{2}}{9}t - \frac{3734}{10125}t^{2} + \frac{13\pi^{2}}{27}t^{2} - \frac{5312}{385875}t^{3} + \frac{16}{2205}t^{4} - \\ &- \left(\frac{12}{35} - \frac{4}{45}t\right)t^{4}\Phi\left(t,2,\frac{9}{2}\right) + f_{1}(t)\ln(1-t) - f_{3}(t)\text{Li}_{2}(t) - 2\left(1+2t^{2}\right)\text{Li}_{3}(t); \end{split}$$

$$c_{2}(t) = \frac{2869}{3780} - \frac{29}{70}t + \frac{2081}{1890}t^{2} + \frac{1}{27}t^{3} - \frac{\pi^{2}}{9}(1+2t^{2}) + \left(\frac{12}{35} - \frac{4}{45}t\right)\frac{1}{\sqrt{t}}\operatorname{arctanh}\left(\sqrt{t}\right) - f_{4}(t)\ln(1-t) + \frac{1}{3}(1+2t^{2})\operatorname{Li}_{2}(t), \ c_{3}(t) = -\frac{4}{45}t^{2} + \frac{44}{945}t^{3};$$

$$d_{0}(t) = \frac{31937}{68040} + \frac{32}{315t^{2}} + \frac{23104}{8505t} + \frac{6509}{630}t - \frac{334}{945}t^{2} + \left(\frac{12}{35} - \frac{4}{45}t\right)\frac{1}{t^{3}}\Phi\left(\frac{1}{t}, 3, \frac{5}{2}\right) - f_{1}(t)\text{Li}_{2}\left(\frac{1}{t}\right) + f_{2}(t)\text{Li}_{3}\left(\frac{1}{t}\right) - 4\left(1 + 2t^{2}\right)\text{Li}_{4}\left(\frac{1}{t}\right);$$

$$d_{1}(t) = \frac{1579}{1134} + \frac{16}{105t^{2}} + \frac{3776}{2835t} + \frac{4568}{945}t - \frac{334}{945}t^{2} + \left(\frac{12}{35} - \frac{4}{45}t\right)\frac{1}{t^{3}}\Phi\left(\frac{1}{t}, 2, \frac{5}{2}\right) + f_{1}(t)\ln\left(1 - \frac{1}{t}\right) + f_{3}(t)\operatorname{Li}_{2}\left(\frac{1}{t}\right) - 2\left(1 + 2t^{2}\right)\operatorname{Li}_{3}\left(\frac{1}{t}\right);$$

$$d_{1}(t) = \frac{139}{114} + \frac{111}{t^{4}} + \frac{44}{t^{2}} + \left(\frac{12}{t^{4}} + \frac{4}{t^{4}}\right)\frac{1}{t^{4}} \operatorname{exterp}\left(\frac{1}{t^{4}}\right) - f_{1}(t)\ln\left(1 - \frac{1}{t^{4}}\right)$$

$$d_{2}(t) = \frac{139}{3780} + \frac{111}{70}t - \frac{44}{315}t^{2} + \left(\frac{12}{35} - \frac{4}{45}t\right)\frac{1}{\sqrt{t}}\operatorname{arctanh}\left(\frac{1}{\sqrt{t}}\right) - f_{4}(t)\ln\left(1 - \frac{1}{t}\right) - \frac{1}{3}\left(1 + 2t^{2}\right)\operatorname{Li}_{2}\left(\frac{1}{t}\right),$$

где Ф – функция Лерха; Lin – полилогарифм.

Рис. 2. Зависимость коэффициента $A_2^{(8)}$ от отношения масс лептонов

Рисунок 2 демонстрирует для диаграммы, представленной на рис. 1, зависимость вклада в АММ лептонов от отношения масс лептонов: точные выражения (2)–(3) – это сплошная линия, кривая из точек – разложение до 4-го порядка при t < 1, а пунктирная – для области t > 1. Черная точка соответствует универсальному вкладу:

$$A_2^{(8)}(t=1) = 3a_{\rm univ}^{(8)} = \frac{151849}{40824} - \frac{2\pi^4}{45} + \frac{32\zeta(3)}{63}.$$

В данной работе получены точные аналитические выражения для вклада в аномальный магнитный момент лептона $(g-2)_L$, от диаграммы поляризации вакуума тремя лептонными петлями, в случае, когда одна из лептонных петель совпадает с исходным лептоном. Полученные аналитические выражения могут быть использованы для проверки трудоемких численных расчетов, качественных сравнений, а также могут быть востребованы в связи с планируемыми улучшениями точности экспериментов аномальным магнитным моментам лептонов.

Литература

- 1. Lautrup, B. E. Recent developments in the comparison between theory and experiments in quantum electrodynamics / B. E. Lautrup, A. Peterman, E. Rafael // Phys. Rept. 1972. Vol. 3. P. 193–259.
- 2. The anomalous magnetic moment of the muon in the Standard Model / T. Aoyama [et al.] // Phys. Rept. 2020. Vol. 887. P. 1–166.
- 3. Schwinger, J. S. Quantum electrodynamics. III: The electromagnetic properties of the electron: radiative corrections to scattering / J. S. Schwinger // Phys. Rev. 1949. Vol. 76. P. 790–817.
- Parker, R. H. Measurement of the fine-structure constant as a test of the Standard Model / R. H. Parker // Science. – 2018. – Vol. 360. – P. 191–195.
- Davoudiasl, H. Tale of two anomalies / H. Davoudiasl, W. J. Marciano // Phys. Rev. D. 2018. – Vol. 98. – Art. 075011. – P. 5.
- (Muon g-2 Coll.) Measurement of the positive muon anomalous magnetic voment to 0.46 ppm / B. Abi [et al.] // Phys. Rev. Lett. – 2021. – Vol. 126. – Art. 141801. – P. 11.
- 7. Aguilar, J. P. Muon anomaly from lepton vacuum polarization and the Mellin-Barnes representation. / J. P. Aguilar, D. Greynat, E. Rafael // Phys. Rev. D. – 2008. – Vol. 77. – Art. 093010. – P. 27.