где $\tau_{\rm u},\ \tau_{\rm n}$ – постоянные времени заряда и разряда конденсатора ФНЧ; $t_{\rm u},\ t_{\rm n}$ – длительности импульса и паузы, $t_{\scriptscriptstyle \Pi} = T - t_{\scriptscriptstyle \parallel}$; σ — приведенная погрешность осреднения, $\sigma = \frac{\Delta U}{F}$, где ΔU – абсолютная погрешность осреднения.

Следует отметить, что о принимает максимальное значение при условии $\tau_{_{\rm H}}$, $\tau_{_{\rm H}} > T$, $t_{_{\rm H}} > \frac{T}{2}$ и составляет $\sigma = 0.5\delta$, где δ – относительный разброс постоянных времени $\tau_{_{\text{и}}}$ и $\tau_{_{\text{п}}}$.

Относительный разброс постоянных времени $\tau_{_{\! \! I \! \! \! I}}$ и $\tau_{_{\! \! I \! \! \! I}}$ δ может быть уменьшен до приемлемых уровней путем увеличения значений или R и/или C ФНЧ, однако это ведет к снижению быстродействия ФНЧ, т. е. к уменьшению быстродействия операции осреднения, что не всегда является допустимым.

Полученные количественные соотношения позволяют находить компромисс между погрешностью и быстродействием операции осреднения при заданных неравенствах постоянных времени $\tau_{_{\rm II}}$ и $\tau_{_{\rm II}}$, т. е. при заданных разбросах в сопротивлении открытого состояния ключей верхнего и нижнего уровней источника ШИМпоследовательностей напряжений.

Литература

- 1. Карпов, В. А. Анализ инструментальной погрешности двухосевого электролитического инклинометра. / В. А. Карпов, О. М. Ростокина, А. В. Карпов // Вестн. Гомел. гос. ун-та им. П. О. Сухого. – 2017. – № 1. – С. 77–80.
- 2. Анализ методической погрешности двухосевого электролитического инклинометра / В. А. Карпов [и др.] // Метрология и приборостроение. – 2018. – № 2. – С. 35–38.

УДК 621.38

КОНТРОЛЛЕР МЫШИ С УПРАВЛЕНИЕМ ЖЕСТАМИ

Д. А. Литвинов, А. В. Ковалев, А. В. Лашкевич

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Организация бесконтактного интерфейса человека с компьютером с помощью жестов.

Ключевые слова: человеко-компьютерное взаимодействие, управление жестами, контроллер мыши.

MOUSE CONTROLLER WITH MOTION CONTROL

D. A. Litvinov, A. V. Kovalev, A. V. Lashkevich

Sukhoi State Technical University of Gomel, the Republic of Belarus

Organization of contactless human-computer interface using motion.

Keywords: human-computer interaction, motion control, mouse controller.

Будущее информационно-коммуникационных технологий, как правило, связывают с ростом производительности вычислительных систем, совершенствованием каналов связи, а также с расширением функциональности приложений и операционных систем. Однако углубленный анализ эффектов технологического развития дает основание полагать, что ключевую роль в формирующейся экосистеме тотального пользования компьютерами будут играть в первую очередь новые средства взаимодействия человека и компьютера [1].

Человеко-компьютерное взаимодействие (human-computer interaction, HCI) — это область компьютерных наук, дисциплина, занимающаяся проектированием и оценкой интерактивных вычислительных систем для использования человеком,а также изучением происходящих процессов. Основной задачей человеко-компьютерного взаимодействия является улучшение взаимодействия между человеком и компьютером, делая компьютеры более удобными и восприимчивыми к потребностям пользователей. В качестве основных факторов, влияющих на разработку человеко-компьютерного взаимодействия, выступают специфика деятельности пользователя и организация «дружественного» интерфейса.

Исследования в области человеко-компьютерного взаимодействия опираются на все более полную и сложную модель человека (оператор – пользователь – личность с уникальным опытом), а поэтому методы юзабилити-исследований будут совершенствоваться и представлять актуальный предмет исследований [2].

Человеко-компьютерное взаимодействие расширилось от настольных офисных приложений до включения в себя игр, обучения, образования, торговли, здравоохранения и медицинских приложений и прочее. Все системы для организации HCI можно разделить на контактные и бесконтактные. Во первых, управление компьютером осуществляется непосредственным указанием своих действий, с использованием дополнительных устройств — мышь, тачпад, тачскрин и др. Во-вторых, в качестве HCI используется бесконтактное управление с помощью голоса, жестов рук или других частей тела человека.

Распознавание жестов тесно связано с понятием отслеживания. Обычно отслеживание рассматривается как процесс поиска временных соответствий между кадрами. Применительно к отслеживанию жестов, алгоритм распознавания связывает идентифицированный жест в предыдущих кадрах с текущим фреймом (рис. 1). Что касается статических жестов, которые могут быть представлены одним кадром, их отслеживание не требуется.

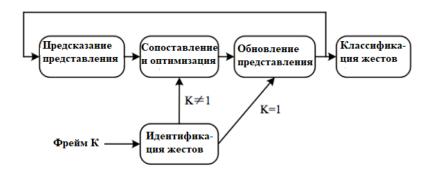


Рис. 1. Функциональная схема алгоритма отслеживания жестов

Классификация подходов к отслеживанию жестов:

- единичная гипотеза быстрый и простой алгоритм. Подходит для отслеживания одного жеста в контролируемой среде;
- множественные гипотезы возможность отслеживания нескольких целей одновременно. Подходит для отслеживания нескольких жестов в контролируемой среде;

- расширенная модель трекинга целевая история сохраняется и доступна для целевой оценки. Подходит для долговременного отслеживания жестов;
- отслеживание путем обнаружения алгоритм обучения повышает надежность и снижает уровень шума. Этот комбинированный подход имеет предпочтительную производительность в тестах. Подходит для отслеживания жестов в сложной среде.

Классификация жестов – это последний и самый важный шаг в распознавании жестов. Большинство человеческих жестов – это динамические жесты. Один динамический жест всегда состоит из нескольких кадров. Чтобы классифицировать динамические жесты, классификация жестов должна выполняться после или вместе с их отслеживанием.

В статье представлена разработка контроллера мыши с управлением жестами. Для организации взаимодействия человека с компьютером в устройстве предлагается использовать камеру для отслеживания жестов рук и действий пальцами. Основной задачей предлагаемой системы является выполнение функций указателя компьютерной мыши и функции тачпада.

Электронный модуль выполнен на основе одноплатного миникомпьютера $Raspberry\ Pi\ Zero\ W$ (размер 67 х 30 мм). Модуль построен на основе ARM процессор $Broadcom\ BCM2835$ с ядром ARM1176JZ и тактовой частотой 1 ГГц. BCM2835 включает в себя графический сопроцессор $Broadcom\ VideoCore\ IV$ с поддержкой $Open\ GL$. Миникомпьютер имеет 512 MB оперативной памяти, и поддерживает следующие интерфейсы: $Wi\text{-}Fi\ 802.11\ b/g/n$, $Bluetooth\ 4.1$ и $Bluetooth\ (BLE)$, а также CSI-интерфейс для подключения камеры.

Для слежения за жестами в устройстве используется цветная цифровая камера *Omnivision* 5647, с *CSI*-интерфейсом. Она позволяет захватывать изображения с разрешением 5 Мп и записывать видео *HD*-качества 1080 р со скоростью 30 кадров в секунду.

Алгоритм работы программы основан на слежении за ключевыми ориентирами ладони. Для решения данной задачи используется метод создания ориентиров, называемых *landmarks* (рис. 2), с их последующим анализом. Система на кадрах изображений, поступающих от видеокамеры, распознает ладонь человека, фиксируют ключевые точки, их координаты и отслеживает перемещение ориентиров, интерпретируя жесты.

Для его программной реализации проекта используется библиотека алгоритмов обработки изображений и компьютерного зрения — OpenCV и фреймворк MediaPipe. OpenCV — это библиотека программного обеспечения для компьютерного зрения и машинного обучения с открытым исходным кодом. OpenCV был создан, чтобы обеспечить общую инфраструктуру для приложений компьютерного зрения и ускорить использование машинного восприятия в коммерческих продуктах.

MediaPipe — это кроссплатформенная платформа машинного обучения с открытым исходным кодом, используемая для построения систем машинного обучения. Одним из основных применений фреймворка является обнаружение лица и рук и извлечение ключевых точек для передачи в модель компьютерного зрения.

Проект реализован на языке программирования *Python*, с использованием библиотеки *Pynput*, которая реализует *API* для управления мышью.

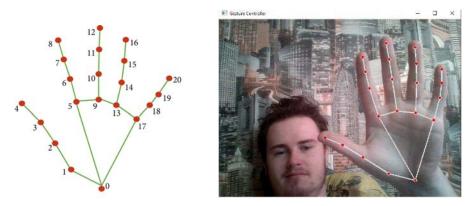


Рис. 2. Пример отображения ориентиров ладони

На рис. 3 представлен результат работы контроллера мыши. На картинках отображены жесты с нанесенными ориентирами для действий, интерпретируемых как щелчок левой (картинка слева) и правой кнопками мыши.

Рис. 3. Жесты, интерпретируемые как щелчок левой (слева) и правой кнопками мыши

Контроллер позволяет управлять курсором мыши с помощью жестов и выполняются следующие команды: перемещение курсора по экрану компьютера, щелчок правой и левой кнопкой мыши, скроллинг вниз—вверх, захват и перемещение объектов. При необходимости устройство может быто дополнено другими жестами.

Разработанные алгоритмы управления на основе жестов могут быть использованы как в отдельном устройстве, подключаемом к компьютеру по Wi-Fi или Bluetooth интерфейсу, так и на персональном компьютере с камерой или ноутбуке.

Литература

- 1. Ахметов, К. Взаимодействие человека и компьютера: тенденции, исследования, будущее / К. Ахметов // Форсайт. 2013. Т. 7, № 2. С. 58–68.
- 2. Компаниец, В. С. Проектирование и юзабилити-исследование пользовательских интерфейсов : учеб. пособие / В. С. Компаниец, А. Е. Лызь. Ростов н/Д. : ЮФУ. 2020. 107 с.
- 3. Кэлер, А. Изучаем OpenCV 3 / А. Кэлер, Г. Брэдски. М.: ДМК-Пресс, 2017. 826 с.