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Abstract
The four-fermion contact-interaction searches in the process e+ e~ -> p+ p~ 
at a future e+ e“ Linear Collider with c.m. energy y/s = 0.5 TeV and 
with both beams longitudinally polarized are studied. We evaluate the 
corresponding model-independent constraints on the coupling constants, 
emphasizing the role of beam polarization, and make a comparison with 
the case of Bhabha scattering.

1 Introduction
Contact interaction Lagrangians (CI) generally represent an effective descrip
tion of the ‘low energy’ manifestations of some non-standard dynamics acting 
at new, intrinsic, mass scales much higher than the energies reachable at cur
rent particle accelerators. As such, they can be studied through deviations of 
the experimental observables from the Standard Model (SM) expectation, that 
reflect the additional presence of the above-mentioned new interaction. Typi
cal examples are the composite models and the exchanges of extremely heavy 
neutral gauge bosons and leptoquarks [1, 2].

Clearly, such deviations are expected to be extremely small, as they would 
be suppressed for dimensional reasons by essentially some power of the ratio 
[between the available energy and the large mass scales. Accordingly, very high 
(energy reactions in experiments with high luminosity are one of the natural 
Hools to investigate signatures of contact interaction couplings. In general, these 
[constants are considered as a priori free parameters, and one can quantitatively 
[derive an assessment of the attainable reach and of the corresponding upper 
[limits, essentially by numerically comparing the deviations with the expected 
(experimental statistical and systematical uncertainties on the cross sections.
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Here, we consider the muon pair production process

e+  +  e~ -> p + p~, (1)

at a Linear Collider (LC) with c.m. energy yfs =  0.5 TeV and polarized electron 
and positron beams. We discuss the sensitivity of this reaction to the general, 
SU(3) x SU (2) x U(l) symmetric e e f f  contact-interaction effective Lagrangian, 
with helicity-conserving and flavor-diagonal fermion currents [3]:

£ci =  ^ 0  (e«7MeQ) • (2)

In Eq. (2): a, S =  L ,R  denote left- or right-handed helicities, generation and 
color indices have been suppressed, and the CI coupling constants are parame
terized in terms of corresponding mass scales as ea $ =  Ĵ / A ^  with =  ±1,0 
depending on the chiral structure of the individual interactions. Also, conven
tionally the value of g ^  is fixed at =  4тг, as a reminder that, in the case 
of compositeness, the new interaction would become strong at y/s of the order 
of Obviously, in this parameterization, exclusion ranges or upper limits 
on the CI couplings can be equivalently expressed as exclusion ranges or lower 
bounds on the corresponding mass scales AQ^.

For a given final lepton flavour p, £ci in Eq. (2) envisages the existence 
of eight individual, and independent, CI models corresponding to the combi
nations of the four chiralities a ,0  with the ±  signs of the т/’s, with a priori 
free, and nonvanishing, coefficients. Correspondingly, the most general (and 
model-independent) analysis of the process (1) must account for the compli
cated situation where all four-fermion effective couplings defined in Eq. (2) are 
simultaneously allowed in the expression for the cross section, and in principle 
can interfere and weaken the bounds in case of accidental cancellations.

Of course, the different helicity amplitudes, as such, do not interfere. How
ever, the deviations from the SM  could be positive for one helicity amplitude, 
and negative for another. Thus, cancellations might occur.

The simplest attitude is to assume non-zero values for only one of the cou
plings (or one specific combination of them) at a time, with all others zero, 
this leads to tests of the specific models mentioned above. But, in principle, 
constraints obtained by simultaneously including couplings of different chirali
ties might become considerably weaker. Therefore, it should be higly desirable 
to apply a more general (and model-independent) approach to the analysis of 
experimental data, that simultaneously includes all terms of Eq. (2) as indepen
dent free parameters, and can also allow the derivation of separate constraints 
(or exclusion regions) on the values of the coupling constants.

To this aim, in the case of the process (1) at the LC considered here, a 
possibility is offered by initial beam polarization, that enables us to extract
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Mrom the data the individual helicity cross sections through the definition of 
[particular, and optimal, polarized integrated cross sections and, consequently, 
to disentangle the constraints on the corresponding CI constants [4]—[8]. In 
this note, we wish to to present a model-independent analysis of the CI that 
complements that of Refs. [4]—[8], and is based on the measurements of the 
observables such as the total cross section, the forward-backward asymmetry 
уірв, the left-right asymmetry 4LR, and left-right forward-backward asymmetry 
ALR.FB-

2 Observables
For the process Eq. (1) we can neglect fermion masses with respect to y/s. and 
express the amplitude in the Born approximation including the 7 and Z  s- 
channel exchanges plus the contact-interaction term of Eq. (2). With Pe and Pg 
the longitudinal polarizations of the electron and positron beams, respectively, 
and в the angle between the incoming electron and the outgoing fermion in the 
c.m. frame, the differential cross section can be expressed as [9]:

f  Rl + cos0)2o+  +  (1 -  e°s^)2cr_] . (3)
dcos# 8 L J

In terms of the helicity cross sections aa p (with a, /? =  L, R), directly related to 
the individual CI couplings eQ :̂

a+  =  I  [ ( l - P e ) ( l+ F g )a LL +  ( l + P e )(l-F e)oR R ]

=  J  K1 ~  PeS) 0'LL +  (1 +  PeS) ORR] , (4)

a -  =  1 [ ( l - F e )(l +  Fe)f7LR + (l +  Fe ) ( l - F e ) (7RL]

=  4- [(1 -  Feff) OLR +  (1 +  PeS) ORL] , (5)

where 

is the effective polarization [10], |Feff| <  1, and D =  1 -  PePg. For unpolarized 
positrons Peg -> Pe and D  -> 1, but with Pg 0, |Feff| can be larger than |Fe |. 
Moreover, in Eqs. (4) and (5):

=  op t |A4Q(3|2 , (7)
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where <7pt =  ст(е+ е —> 7* —> l+ l ) = (4тга2 )/(3з). The helicity amplitudes 
M Qp can be written as

M a p = Qe Qf + g e
a 9pXz + ^  ea p (8)

where x z  = s /(s  -  + iM z ^ z )  represents the Z  propagator, g£ = (—1/2 +
s^ /s iy cv y  and g^ = s ^ /s w c w  are the SM left- and right-handed fermion 
couplings of the Z  with =  1 — c ^  =  sin2 9w-

We now define, with e the experimental efficiency for detecting the final state 
under consideration, the four, directly measurable, integrated event rates:

NL,F, WR,F , M ,B, Mt,В , (9)

where (a =  L, R)

1 f 1
•M F =  n-Cinte / (dtTa /dcos0)dcos0, (10)’ 2 Jo

1 [°N a ,B = - £mt e /  (d<rQ /dcos0)dcos0, (11)
2  J -i

and subscripts R and L correspond to two sets of beam polarizations, Pe =  +Pi, 
Рё = —P2 (Pi,2 > 0) and Pe = —Pi, Pg = +P2, respectively, or, alternatively, 
Peg = ± P  with D fixed. In Eqs. (10) and (11), £jnt is the time-integrated 
luminosity, we assume it to be equally distributed over the two combinations of 
beam polarizations, L and R.

The set of ‘conventional’ observables we consider here for the discussion of 
bounds on the CI parameters are the unpolarized cross section:

CTu n pol — J  [^LL +  ^LR +  CTRR +  CTRL] 5 (12)

the (unpolarized) forward-backward asymmetry:

AFB =  7 — - ------ - ------ - — 5 (13)
4  CTLL +  CTLR +  CTRR +  CTRL

the left-right and the left-right forward-backward asymmetries (which both re
quire polarization), that can be written as, respectively:

AL R  =  ^ L +  CTL R -CTR R -CTRL , ( 1 4 )

CTLL +  CTLR +  CTRR +  CTRL

and
.  3  CTL L — CTRR +  CTRL -  CTLR / -  ,.4

-ALR,FB =  T ------ ;-------- ;-------- ;------ ■ (I5 )
4  CTLL +  CTRR +  CTRL +  CTLR
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Using Eqs. (7) and (8), one can easily express the deviations of these observables from the SM  predictions in terms of the SM  couplings and the C I couplings ea p of Eq. (2).The above observables are connected to the measured ones through the integrated event rates ^ ,R ;F ,B , see Eq. (9), as follows:
^unpo l — ^ i n t  e (16)where

«  =  M .,F  +  W ,F  +  Ж ,В  +  Ж ,В (17)is the total number of events observed with polarized beams (for the four measurements). Eq. (16) expresses the well-known fact that, when both the electron and positron beams are polarized, the total annihilation cross section into fermion-antifermion pairs will be increased by the factor D , with 1 <  D  <  2.For the experimental forward-backward asymmetry.
. — дехр —

FB f  F  4. B  +  B  ’ (18)Finally, for the experimental left-right and left-right forward-backward asymmetries the relations are
p  л _  л exp _

eff LR LR _|_ 7VR  F  -p TVR  B  ’ (19)and
-PefMbR.FB =  ^LR,FB = (Ж,Р ~ M<,F ) ~ (Ж,В ~ Ж,в) 

VL,F + Mt,F + Ж,В + Ж,В
(20)In the following analysis, cross sections will be evaluated including initial- and final-state radiation by means of the program Z F IT T E R  [11], which has to be used along with ZE F IT , adapted to the present discussion, with mtop  — 175 GeV and т д  =  120 GeV. One-loop SM  electroweak corrections are accounted for by improved Born amplitudes [12,13], such that the forms of the previous formulae remain the same. Concerning initial-state radiation, a cut on the energy of the emitted photon △ =  ^ 7 /^beam =  0-9 is applied for л/ s =  0.5 TeV in order to avoid the radiative return to the Z  peak, and increase the signal originating from the contact interaction contribution [14].As numerical inputs, we shall assume the commonly used reference values of the identification efficiencies [15]: e =  95% for p + p~. Concerning the statistical uncertainty, to study the relative roles of statistical and systematic uncertainties we shall vary £int from 50 to 500 fb- 1  (half for each polarization orientation) with uncertainty S£int/£int =  0.5%, and a fiducial experimental angular range
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I cos#I <  0.99. Also, regarding electron and positron degrees of polarization, we 
shall consider the values: |Ре | =  0.8; |Pg| =  0.0, 0.4 and 0.6, with SPe /P e = 
SPe/P-e =  0.5 %.

3 M odel independent constraints
The current bounds on Aa  ̂cited in Sect. 1, of the order of several TeV, are such 
that for the LC c.m. energy y/s =  0.5 TeV the characteristic suppression factor 
s/Л 2 in Eq. (8) is rather strong. Accordingly, we can safely assume a linear 
dependence of the cross sections on the parameters ea p. In this regard, indi
rect manifestations of the CI interaction (2) can be looked for, via deviations of 
the measured observables from the SM predictions, caused by the new interac
tion. The reach on the CI couplings, and the corresponding constraints on their 
allowed values in the case of no effect observed, can be estimated by compar
ing the expression of the mentioned deviations with the expected experimental 
(statistical and systematic) uncertainties.

To this purpose, assuming the data to be well described by the SM (ea p =  0) 
predictions, i.e., that no deviation is observed within the foreseen experimental 
uncertainty, and in the linear approximation in of the observables (12)—(15), 
we apply the method based on the covariance matrix:

vkl = {(Ok - - 6^

(21)

Here, the JVj are given by Eq. (9), so that the statistical error appearing on the 
right-hand-side is given by

SNi = y/Ni, (22)

and the Oi =  (<rUnpoi, ^ FB , ^ LR, ALR.FB) axe the four observables. The second, 
third and fourth terms of the right-hand-side of Eq. (21) represent the systematic 
errors on the integrated luminosity £jnt, polarizations Pe and Pg, respectively, 
for which we assume the numerical values reported in the previous Section. From 
the explicit expression of the matrix elements VJu, one can easily notice that, 
apart from cru npoi and AFB that are uncorrelated (V12 =  0), all other pairs of 
observables show a correlation. Indeed, the non-zero diagonal entries are given 
by:
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V „  =  1 -  A ^ ‘  
1Ntot eff J v tot

^44 =  ------+  ^ L R .F B  Д 2> (23)-r eff-'v totand, for the non-diagonal ones we have:К з  =  °unpol -^LR △ ? ; K 4  =  ^unpol A L R ,FB △?;
I Z  _  ^ L R .F B  -  ^ F B ^ L R  T Z  _  A L R  -  A F B A L R ,FB . —  v e x ₽ ’ ' 2 4  —  № х р  ’ J ’ tot ■i v totTZ  _  ^ F B  ~  ^ L R ^ L R ,F B -P eff .  .  л 2^34 p2 ДГ®̂Р +  A L R  A L R ,FB ^ 2 ’ (24)■* eff2 V totHere: △2 =  Й &  [_ ( 1 "  P ^  P e  e * +  (1  ~ P ' } P e  ’

△2 =  , 2 5 )2 1and ce =  8Pe /Pe , cg =  8Pg/Рё and t£  =  <5£int/^int are the relative systematic uncertainties.One can notice, from Eq. (23), that systematic uncertainties in crun₽el are induced by ee , cg and t£ , while those in A L R  and A L R ,F B  arise from ee and eg only, and not from e£. Finally, A F B  is free from such systematic uncertainties.Defining the inverse covariance matrix Ж - 1  as
with e, =  (CL L , L̂ R , R̂ L , R̂ R ), model-independent allowed domains in the four-dimensional C I parameter space to 95% confidence level are obtained from the error contours determined by the quadratic form in ea p [16, 17]:

^LL

(^LL CLR ^RL CRR.) W  1 ^LR 
^RL

=  9.49.
^RR ;

(27)
The value 9.49 on the right-hand side of Eq. (27) corresponds to a fit with four free parameters [18, 19]. ____
The quadratic form (27) defines a four-dimensional ellipsoid in the (€/,£,, еьн, e«£, едя) 
parameter space. The matrix W  has the property that the square roots of the
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individual diagonal matrix elements, y/Wa, determine the projection of the el
lipsoid onto the corresponding г-parameter axis in the four-dimensional space, 
and has the meaning of the bound at 95% C.L. on that parameter regardless of 
the values assumed for the others. Conversely, 1 /y  (W ^1)^ determines the value 
of the intersection of the ellipsoid with the corresponding i-parameter axis, and 
represents the 95% C.L. bound on that parameter assuming all the others to be 
exactly known. Accordingly, the ellipsoidal surface constrains, at the 95% C.L. 
and model-independently, the range of values of the CI couplings cQ/3 allowed 
by the foreseen experimental uncertainties.

For the chosen input values for integrated luminosity, initial beam polariza
tion, and corresponding systematic uncertainties, such model-independent limits 
are listed as lower bounds on the mass scales Aa p in Table 1. All the numerical 
results exhibited in Table 1 can be represented graphically. In Fig. 1 we show 
the planar ellipses that are obtained by projecting onto the six planes (CLL> ^L R ), 

(CLL,^R R ), ^ R R ,^L R ), ^ R R ^ R L )-, (.̂ L R ^ R L ) the 95% C.L. allowed 
four-dimensional ellipsoid resulting from Eq. (27). In these figures, the inner and 
outer ellipses correspond to positron polarizations |Pg| =  0.6 and |Pg| =  0.0, re
spectively.

Table 1: Reach in Aa p at 95% C.L., from the model-independent analysis per
formed for e+ e“ -> and e+ e~, at E c .m. =  0.5 TeV, £jnt =  50 fb- 1  and 
500fb"1 , |P~ | =  0.8 and |P + 1 =  0.6.

process -tint 
fb-1

ALL 
TeV

ARR 
TeV

ALR

TeV
ARL

TeV

e + e ~  — >
50 35 35 31 31

500 47 49 51 52

1CD 
+CDT

 

1CD  
+CD

50 38 36 54
500 51 49 84

To appreciate the significant role of initial beam polarization we should 
consider that, in the unpolarized case the only available observables would be 
o' oc (CTLL +  ORR) +  (CTL R +  O-RL) and a ■ AF B  oc («'LL +  O-RR) -  (<TL R +  CTRL), see 
Eqs. (12) and (13). Therefore, by themselves, the pair of experimental observ
ables стцпроі and AF g are not able to limit separately the CI couplings within 
finite ranges, but could only provide a constraint among the linear combina
tions of parameters («LL +  CRR) and (CLR +  €RL)- In some planes, specifically in 
the (еьь> CRR) and (CLR, €RL) planes, this constraint has the form of (unlimited) 
bands of allowed values, or correlations, such as those limited by the straight 
lines in Fig. 1. With initial beam polarization, two more physical observables be-
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[10~4 TeV-2 ]

Figure 1: Two-dimensional projections of the 95% C.L. allowed region (27) for 
e+ e~ -> ц+ ц~ at £jnt =  50 fb^ 1 and £mt =  500 fb - 1 . |Pe [ =  0.8, [Pg[ — 0-0 
(outer ellipse) and |Pg| =  0.6 (inner ellipse). The solid crosses represent the 
‘one-parameter’ bounds under the same conditions.
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come available, i.e., ALR and ALR.FB , and this enables us to close the bands into 
the ellipses in Fig. 1. The allowed bounds obtained from the observables trunpol 
and AFB are not affected by electron polarization (for unpolarized positrons). 
Therefore, the bounds in the form of straight lines are tangential to the outer 
ellipses referring to Pg =  0, and in this case the role of Pe 0 is just to close 
the corresponding band to a finite area.

The crosses in Fig. 1 represent the constraints obtainable by taking only one 
non-zero parameter at a time, instead of all four simultaneously non-zero, and 
independent, as in the analysis discussed here. Similar to the inner and outer 
ellipses, the shorter and longer arms of the crosses refer to positron polariza
tion |Pg| =  0.6 and 0.0, respectively. Such ‘one-parameter’ results are derived 
from a x2 procedure applied to the combination of the four physical observables 
(12)—(15), also taking the above-mentioned correlations among observables into 
account. This procedure leads to results numerically consistent with those pre
sented from essentially the same set of observables in Ref. [20], if applied to the 
same experimental inputs used there.

For comparison, we also show in Table 1 the corresponding limits obtained 
in the case of polarized Bhabha scattering [21]. The table shows that for ALL 
and ARR the restrictions from e+ e~ —> and e+ e“ —> e+ e_  are quali
tatively comparable. Instead, the sensitivity to ALR, and the corresponding 
lower bound, is dramatically higher in the case of Bhabha scattering. In this 
regard, this is the consequence of the initial beams longitudinal polarization 
that allows, by measuring suitable combinations of polarized cross sections, to 
directly disentangle the coupling «LR- Indeed, without polarization, in general 
only correlations among couplings, rather that finite allowed regions, could be 
derived.
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