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In the framework of the relativistic quasipotential approach to the quantum 
field theory, a method is developed according to which a non-local separable 
quasipotential describing the interaction between two relativistic spinless parti­
cles of unequal masses can be reconstructed by of the phase shift and bound-state 
energies.

It was proven by Gelfand and Levitan [1, 2], Marchenko [3], and Krein 
[4, 5] that the inverse problem can in principle be solved in the framework 
of nonrelativistic theory. They obtained the linear integral equations in 
two versions, which served as a basis for a further development of inverse­
problem theory. The most-complete survey of this theory was given in the 
monographs of Chadan and Sabatier [6] and Zakhariev and Suzko [7].

In the most of studies, however, the problem of reconstructing inter­
action is formulated on the basis of the non-relativistic Schrodinger equa­
tion. Therefore, the problem of reconstructing interaction for essentially 
relativistic systems -  in particular, within the relativistic quasipotential 
approach [8] -  is yet remained important.

Within the relativistic quasipotential approach proposed in [9], the 
problem is considered here for the case where a non-local separable quasipo­
tential simulating the interaction between two relativistic spinless particles 
of unequal masses (mi m2) must be reconstructed on the basis of the 
phase shift and bound-state energies. The given approach is based on the 
expression that was found by the present author for the phase shift and
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which has the form [10] (we use the system of units where h = c =  1)

tg^(V) =
oo
{ d x  
0

Л (х) 
chy -  chy' (1)

where the quantity y' is defined via the relation Eqi — m'yjl + (q'/т 'У  = 
m'chy', т' = and

A i M  =  ^Ф ?(сН іу ')|Й (у ')|2 , s ( =  ± l. (2)

Here, Qi(z) is a Legendre function of the second kind.
In order to find the quasipotential Vi (r) on the basis of the phase shift 

it is necessary to solve the integral equation (1) concerning of the 
function After that, the function P/(y') is determined from Eq.(2). 
The quasipotential Vi (r) is then reconstructed by performing the relativis­
tic Hankel transformation

oo
W )  =  -  / d xQ i(^x)V i(x )S i(x ,r). (3)

о

Here, the function S i(x ,r ) is a free solution of finite-difference quasipoten­
tial equation in configuration space [11].

In particular, the relativistic Hankel transformation (3) at I =  0 reduces 
to the conventional Fourier transformation

2 °°V0 (r) =  -  !  dyyVo(y) sinry.
о

We assume that the phase shift ^(у ') in Eq.(l) is a function continuous in 
the sence of Holder with a positive index and that, for y' —> oo, it bahaves 
as

W  = о  [ ( / ) - ]  , /> 0 ,  7 > 1. (4)

These constraints are necessary and sufficient for the quasipotential to 
satisfy the condition

rVi(r) G £i(0, oo), (5)
which ensures the uniqueness of the inverse-problem solution. We therefore 
assume that, as y' increases, the phase shift <5z(y') intersects the straight 
lines 6i(x') = nn (n = 0,1,2,...) from above.
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Suppose that there exist Ui (I >  0) scattering states at energies satis­fying the conditions
E Rn =  >  m ', 71 =  0 , 1 , . . . , ^ - ! .  (6)We then have <M0) =  (7)In this case ei =  +1, while the scattering states energies E'R n  >  m' are found by relation

ЬіЬЬіп) =  n =  0 ,1 ,2 , 1. (8)The integral equation (1) can be reduced to the formA((archx)5;- 1  (x) =  14- —P [ d t ^ 1^  (9)7Г J  L X1where x  =  chy' and where we introduced the following notation:Ф((ж) =  A ^archrr)^1^ )  [1 4 -(гтг/2)0|(^ (10)
gi{x) =  -(2/7Г)(Х 2 -  l^ t g A ^ r r ) , △i(x) =  6i(archrr),
ht(x) =  (я-/2)gi(x){x2  ~  1)-1 / 2  [1 -  fa /2 }gi(x)(x2 -  1)~1/2] 1 =  =  — sinA((a;)exp[—гД ;(х)].W ith the aid of the representationl/ (a  — io) =  гтг5(а) 4- P (l/ a ) ,Eq. (9) can be recast into the form

Ф/(ж) =  14- i T
— / dt------------7Г J  t — x  — го i (И )

If the function Ф^ж) is continues in the sence of Holder and if the integral in Eq. (11) converges then the function
H t {z) =  1 + i 7 .  Ф м а д

/ dL7Г J  t — Z1 (12)
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is analytic in the complex plane of the variable z with the cut from 1 to 
+oo, and besides the relation

lim = 1 (13)
|z|—>00

holds in all directions. Hence, a solution of the integral Eq.(ll) can be 
represented as

Ф/(х) =  Hi(x+ ) = lim Hi(x + i/rf), 1 < x  < oo. (14)

By substituting the solution in (14) into the expression for the discontinuity 
suffered by the function Hi(z) upon traversing the cut, that is

Hi(x+ ) -  H i(x ^  = 2iil>i(x')h^(x) = -2 i  sin Д/(x) exp (іАі(хУ) (15)

we arrive at the homogeneous Riemann-Hilbert equation for the function 
H ^ y

Hi(x+ ) exp (2?А((ж)) -  Hi(xJ) =  0, 1 < x  < oo. (16)

A particular solution satisfying Eq. (16) and the condition in (13) has the 
form

Hi(z) =  ехр[ш; (г)], (17)
where 

°0 л / \
4 «  =  - -  /  (18)

1

Besides 
lim wz(z) =  0, (19)
|z|->oo

and 
w/(z) ~  —A/(l) In |1 — z\ for z -> 1, (20)

7Г
which holds in all directions, as follows from the assumptions on the be­
havior of the phase shift and from the conditions in (4) and (7). Therefore, 
the function Hi(z') has a zero of order щ at the point z =  1.

Thus, according to (14), (17), and (18), the partucular solution to the 
nonhomogeneous integral equation (11) has the form

^[(x) =  exp [o/(x) — iAi (ж)], (21)
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where
a i ^  = - l p j d t ^ .  (22)

1

It should be noted that the function given by (21) is regular at x = 1 (it 
has a zero of order vi at this point), is continuous in the sense of Holder 
with the same index as the phase shift, and is limited for x  —> +oo. All 
this is consistent with the a priori assumptions on its properties.

A general solution to the homogeneous equation 

has the form (14), as before, while the function

( 2 4 )
7Г J t Z

1

is analitic in the complex plane of the variable z with the cut from 1 to 
+oo, and besides the relation

lim H lo(z) =  0 (25)
|z|->oo

holds in all directions. Finally, this function satisfies the homegeneous 
Riemann-Hilbert equation (16). A general solution to this equation will 
be sought in the form

(26) 
k=l \z  — 1)

Substituting (26) into (16) and requiring that the function H[O(z) be finite 
at z =  1, we obtain m = vi. Hence, we have

ВД = (27)к=1 ( ж  —  1 )

It is obvious that, as in the case of a particular solution, the function in 
(27) satisfies Eq.(16) and possesses all the required properties.
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Therefore, by using the notation in (10) and transforming the sum as 
a product, we can recast the general solution to the integral equation (11) 
into the form

2 17,-1
Mx') = — s h / s i n ^ ^ ^ e x p ^ ^ h / ) ]  x [J  

71 n=0
ch/дп -  1 
c h /  — 1 (28)

where
a i  (c h /)  =  - І Р  7 (29) 

JT J ch* -  c h /

We note that, in accordance with the definition in (2), the function 
Ai(x') is of fixed sign at all values of x', and so far as EZ =  +1, that it must 
be positive.

Thus, the solution in (28) is completely determined by the phase shift 
so far as х'яп is also determined by its the behaviour. Moreover, it follows 
from expressions (28) and (29) that the function A^x') is continuous in 
the sense of Holder and that, for x' -> +oo, it behaves as

О [ е * '( /И ] ,  7 > 1, (30)

provided that the phase shift satisfies condition (4).
This in turn implies that the quasipotential Vt(r) satisfies condition (5).

The case where EZ =  — 1 and where there are the scattering states 
at energies satisfying the conditions (6), and щ the bound states whose 
energies lie the in the range

0 <E'ik = m' cos к'ік < m!, x!ik = ік'ік, к =  0,1,..., щ -  1, (31)
is considered in the same way.

Besides, by the Levinson theorem, we have
^(0) =  тг^  +  п/). (32)

In accordance with expression (20), the function Hi(z) therefore has a zero 
of order (vi + щ) at z =  1. Further following in the same way as for the 
case of Si = +1 and considering that the function Ai(x!) must now retain 
a minus sign at all values of / ,  so far as EZ =  — 1, we obtain

Mx!)
2 17,-1

— shx' sin 6t ( / )  exp [a/ (ch/)] Ц
71 n=0

x  M X R n - l  
c h /  -  1 x (33)

П1-1 
х П  

k=0

1 — cos K\ 
c h / -
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Thus, the function Ai(x') is completely determined by the phase shift and 
bound states too, and its sign is contrary to the sign of the phase shift for 
X' —> +oo.

In order to reconstruct the quasipotential Vt(r) by means of the trans­
formation in (3), we can introduce the function

nj — 1

V i M  = П
k=0

sh(x72 ) +  *sin(/4/2) 
sh(x72 ) -  is in (/4 /2 )

Q i^ ih x 'W tM /A f^ x 'l (34)

where A™ (х') is asymptotic form of the function

|Qt(cthx')b(x')| = vW^Mp)
for Ix'l —> oo.

The function И(хО is analitic in the region Imy' > 0, it is continuous 
for liny' > 0 and satisfies the condition

И(у') =  1 +  o(l), l / H o o , (35)

provided that the condition in (5) is carried out. Besides, the function 
И(х9 vanishes nowhere for Imx' > 0. Hence, the function ІпЦ(х') is 
analitic in the region Imx' > 0 and tends to zero at infinity because of 
the estimate in (35). Therefore, we can apply the integral Hilbert trans­
formation to the real and the imaginary parts of the function ln ^ (x z)> 
setting

Qt (cthx'W (x') =  |Q/(cthx') Vi ( / )  I exp [іФі(х')]. (36)

We then obtain
1 0 0

I m l n H ( x ' )  =  — P  [  

7Г J
—oo

dsh(x/2) RelnV|(x) 
sh(%/2) -  sh(x72 )

(37)

= iln [ІадсайЙМ ІМ ГМ І-і /  *h(x/2) 
— OO sh(x/2) -  sh(x72) -  io

Combining (37) with the expression for

R e ln W ) =  In [|QJ(cthx')Vl (x')| /А Г М ]  , 

we now obtain the formula

1 00
t o W )  =  7 7  /  ^sh(x/2) 

2 m  J
—oo

1 ф / 2 ) е Л ( х ) Ж Ч х ^  

sh(x/2) -  sh(x'/2)

(38)

(39)
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which is valid in the region Imx' > 0. At last, from expressions (34) and 
(39), it follows that

71/ — 1

Q < ( c t h x ' ) W )  =  A ? ^  П

A = 0

sh(x72 ) ~ ssin(/4 /2)
sh(x'/2) +  isin(K7/2) (40)

x exp < 2" Z  sh (x /2 )-sh (* '/2 )

which is valid for Imy' > 0.
Thus, a solution to the inverse problem exists and completely deter­

mined as the function is found by the phase shift and bound-state 
energies for I > 0.

To summarize, we note that the method proposed here to reconstruct a 
non-local separable quasipotential simulating the interaction between two 
relativistic spinless particles of unequal masses actually reduces to a one- 
body problem. This is thanks to the possibility of representing, within 
the relativistic quasipotential approach to quantum field theory, the total 
c.m. energy of two relativistic particles of unequal masses as an expression 
proportional to the energy of an effective relativistic particle of mass m'.

Acknowledgments
I am grateful to Yu.S.Vernov, V.I.Savrin, and A.M.Shirokov for a per­

manent interest in this study and for enlightening discussions on the results 
presented here.

References
[1] I.M.Gel’fand and B.M.Levitan, Dokl.Akad.Nauk SSSR 77, 557 (1951).

[2] I.M.Gel’fand and B.M.Levitan, Izv.Akad.Nauk SSSR, Ser.Mat. 15, 
309 (1951).

[3] V.A.Marchenko, Dokl.Akad.Nauk SSSR 104, 695 (1955).

[4] M.G. Krein, Dokl.Akad.Nauk SSSR 76, 21 (1951).

[5] M.G. Krein, Dokl.Akad.Nauk SSSR 76, 345 (1951).

189



[6] K .Chadan and P.C.Sabatier. Inverse Problems in Quantum  Scattering 
Theory (Springer-Verlag, New York, 1977; Mir, Moscow 1980).

[7] B.N.Zakhariev and A.A.Suzko, Direct and Inverse Problems: Po­
tentials in Quantum  Scattering (Energoatomizdat, Moscow, 1985; 
Springer-Verlag, Berlin, 1990).

[8] A.A.Logunov and A.N.Tavkhelidze, Nuovo Cimento 29, 380 (1963).

[9] V.G.Kadyshevsky, Nucl. Phys. В 6, 125 (1968).

[10] Yu.D.Chernichenko, Preprint No.88-27/48, NIIYaF MGU (Institute 
of Nuclear Physics, Moscow State University, Moscow, 1988).

[11] V.G.Kadyshevsky, R.M.Mir-Kasimov, and N.B.Skachkov, Yad.Fiz. 9, 
462 (1969) [Sov. J. Nucl.Phys. 9, 265 (1969)].

190


