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A method based on the Jost-Lehmann-Dyson integral representa
tion is applied to study target mass effects in the inelastic lepton
hadron scattering. It is shown that expressions obtained for the 
structure functions have correct spectral properties.

Introduction. The inclusive cross section of inelastic lepton-hadron 
scattering is expressed as the Fourier transform of the expectation value of 
the current commutator [ J ^ z /2 ) , Jv (—z/2)] in the target state. Structure 
functions of the nucleon Fi(x, Q 2 ) parametrize the corresponding hadronic 
tensor as follows

(1)

x (P. -  9 - 1 ^ )  Рг(і, Q! ) -  О2) ■
\  Q /  AQ ‘ ■‘ J

We consider the structure functions by using an integral representation 
which accumulates general principles of local quantum field theory [1]. We 
apply here the method proposed in [2] which develops an idea of ana
lytic approach in quantum chromodynamics [3,4] which uses the Kallen- 
Lehmann type analyticity. The structure functions are more complicated 
objects than the two-point functions, which are in one way or another re
lated with the Kallen-Lehmann representation. For these functions, the 
general quantum field theory principles, including covariance, Hermitic- 
ity, spectrality, and causality, are expressed by the Jost-Lehmann-Dyson 
(JLD) integral representation [5,6].

The operator product expansion (OPE) is a powerful tool to study 
inelastic scattering processes. This method has been applied to define the 
contribution of target mass terms to the structure functions in paper [7]. 
The scheme that has been elaborated is the following. The first step is to
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organize the OPE by using the operators with definite twist and to take the 
leading twist contribution to get the free-field OPE. The second step is to 
collect the terms in the OPE of the form (q ■ P)n and relate corresponding 
coefficients to the moments of the structure function. Then, one can restore 
physical structure functions by inverting the moments through the Mellin 
transformation. For F2 this method gives

2 3 1
^ . Q 2 ) = + '(1 + (1 + 4XZ€)Z

+ 12e2 2 /  ^ 7  d £ , " F ^  (2)
(1 + p  J?

where F(x) is the quark distribution function, x = Q2 j^v  = Q2/2{q- P) is 
the Bjorken scaling variable, M is the target mass, e =  M 2 /Q 2 , and

1 +  \ / l  + 4ж2б ’

is the Nachtmann variable [8].
The defect of Eq. (2) is that there is a clear mismatch at x =  1. The 

physical structure function F^Q 2 , x) in the left hand side vanishes at x = 1, 
at the same time the right hand side does not. The trouble with the 

-scaling has widely been discussed in the literature (see, for example, 
[9-12]).

The fact that an approximation can conflict with general principles of 
a theory is not rare event in quantum physics. For example, it is well 
known that when the renormalization group equation for the running cou
pling is solved directly, there arise unphysical singularities, for example, the 
ghost pole in the one-loop approximation, and they subsequently appear 
in physical quantities. This trouble can be resolved within the analytic ap
proach proposed in [3,4] and elaborated in [13-23]. This method combines 
the renormalization invariance and the (J2-analyticity of the Kallen-Leh
mann type has revealed new important properties of the analytic coupling 
[3,4,20]. The invariant analytic formulation essentially modifies the be
havior of the analytic running coupling in the infrared region by making 
it stable with respect to higher-loop corrections. This is radically different 
from the situation encountered in the standard renormalization-group per
turbation theory, which is characterized by strong instability with respect 
to the next-loop corrections in the domain of small energy scale. The an
alytic perturbation theory leads to new non-power-series expansions with
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new nonsingular functions [20,21]. Applying this algorithm to analyze the 
amplitudes of processes like the e+ e“-annihilation into hadrons [18], the 
inclusive r-decay [14,16,22,23], and the sum rules for the inelastic lepton
hadron scattering [19], it has been demonstrated that, in addition to loop 
stability, the analytic perturbation theory results are much less sensitive 
to the choice of the renormalization scheme than those in the standard ap
proach. The three-loop level practically insures both the loop saturation 
and the scheme invariance of the relevant physical quantities in the entire 
energy or momentum range.

The method that will be considered here is a generalization of the idea 
used in the analytic approach to quantum chromodynamics. We base our 
consideration on the JLD representation for structure functions of the in
elastic lepton-hadron process that has been suggested in [5,6]. The struc
ture functions depend on two arguments, and the corresponding represen
tation that accumulates the fundamental properties of the theory (such 
as relativistic invariance, spectrality, and causality) have a more compli
cated form in our analysis than in the representation of the Kallen-Leh
mann type for functions of one variable. We use the 4-dimensional integral 
representation proposed by Jost and Lehmann [5] for the so-called sym
metric case. A more general case has been considered by Dyson [6], and 
similar representation are therefore often called the Jost-Lehmann-Dyson 
representation. Applications of this representation to automodel asymp
totic structure functions were considered by Bogoliubov, Vladimirov, and 
Tavkhelidze [24]; some of these results and notation will be used in what 
follows.

The Jost-Lehmann-Dyson representation. The proof of the JLD 
representation is based on the most general properties of the theory, such 
as covariance, Hermiticity, spectrality, and causality [1].

The covariance property means that a structure function W(q, P) de
pend on two scalar arguments, which we choose as v = q-P  and Q2 = —q2 ,

W(q, P) = Q2) .

The spectrality property is written as

O2
W(P, Q2) =  0 for —  = x > 1, 

Zip'
where we used the dimensionless Bjorken variable, which in the physical 
domain of the process for (q +  P )2 > M 2 is kinematically restricted by the 
interval 0 < x < 1.

300



The structure function parametrizes the scattering cross-section and is 
real (the reality property),

W{v, Q ^ = W \v ,Q ^ .

The Hermiticity of the current operator leads to the (anti-) symmetry 
property

W f - ^ Q 2 ) = -W (v ,Q 2).

The vanishing of the current commutator at space-like intervals because 
of the local commutativity of currents gives the causality condition

У dq exp(—iqz~)W(q, P) =  0 for z2 < 0.

For the function W ^ , Q2) satisfying all these conditions, there exists a 
real moderately growing distribution ^(u, A2) such that the JLD integral 
representation holds; in the nucleon rest frame, this can be written as [24]

W (v, Q2) = ^ o ^ c h id A 2 ^  -  (Mu -  q)2 -  A2]V>(u, A2 ) (4)

where the function ^(u , A2) has a support for

P = |u |< l ,  А2 > А ^ ІП =  М 2 ( 1 - У Г ^ 7 ) 2 . (5)

For the process under consideration, the physical values of v and Q2 
are positive. We, thus, can neglect the factor e{qo) = and keep the 
same notation for W(v, Q2). Taking into account that the weight function 
■0(u, A2 ) =  ^{p,X2} is radial-symmetric, as follows from covariance, we 
write down the JLD representation for W  in the covariant form,

fl f<x> fl

x 5{Q2 + M 2p2 +  A2 -  ^ zp ^ v 2 +  M2Q2 ^ p ,  A2) . (6)

As follows from representation (6), a natural scaling variable is given 
by [20,25]  

which accumulates the root structure determined by the J-function argu
ment. At the same time, in the physical region of the process, the s variable
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This expression determines simple properties of the amplitude T(y, Q2) in 
the complex ж-plane and is convenient in the OPE.

In considering consequences of the JLD representation, as noted above, 
the natural scaling variable is given by s. In this case, there arises a similar 
structure of the dispersion integral

T ^ ’ =  I  f  T 1 1'77 7^- ^ i . Q 2) - (16)
7Г J o  S i  1 — ( S i / S ) z

The identity between the structures of the dispersion relations with re
spect to the variables x and s allows us to establish the relation of analytic 
moments to the operator product expansions of currents used in finding 
the <22-evolution of the structure functions of the moments. The moments 
associated with the Bjorken variable correspond to the case where only 
the Lorentz structures of the form P ^ .. .  Р^п are taken into account in 
matrix elements of the operator (P|OM1...Mn|P). Then the application of 
the operator product expansion for the Compton amplitude leads to the 
expansion in powers of (q ■ P}/Q 2 , i.e., to the expansion in the inverse 
powers of x. A similar expansion in the inverse powers of x can also be 
done in dispersion integral (15). The coefficients are then determined by 
the ж-moments. Comparing the two power series gives the sought relation 
between the x-moments and the operator product expansion.

In the general case, the symmetric matrix element (Р|Одь ..Д п |Р) con
tains the Lorentz structures given by {P ^ .. .P ^ } , М 2д ^ {PM1. . .  PMn_2}, 
etc. The moments with respect to the £ variable correspond to choosing 
the operator basis where the expansion goes over traceless tensors, i.e., 
such that the contraction of g ^  with (P|O W ...„„ |P) vanishes for any two 
indices. It is then obvious that the Lorentz structure of the matrix element 
(P lfT n .^JP ) is fixed unambiguously.

Dispersion representation (16) allows us to expand the Compton am
plitude in the inverse powers of s. If the operator basis is chosen such 
that an arbitrary contraction of the tensor with the nucleon
momentum P^  vanishes, then the operator product expansion leads to a 
power series for the forward Compton scattering amplitude with the expan
sion parameter q*qv (PpPv — gpVP 2}/(q2)2 , which corresponds to expanding 
dispersion integral (16) in powers of 1/s2 . This relation between the an
alytic s-moments and the structure of the OPE has been found in [20]. 
It should be stressed that the orthogonality requirement of the symmetric 
tensor (P\Ol t l ...l tn \P) to the nucleon momentum PPj determines its Lorentz 
structure unambiguously.
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Target mass effects. Now we consider the method of incorporating 
the target mass corrections. To make our explanation more transparent 
and not to obscure an essence of the approach with details of technical 
character we start with the case of scalar currents.

Following the approach suggested in [7], consider the twist-two sym
metrical local operators 9 м 1 • • • d^2N ■ For massless quarks

PjCP1 > =  O2N {PM1 ,

where {PM1 • • • P ^ " }  is a traceless combination of the products of vectors 
P ^ .  By using the expression for the scalar combination of {P^1 • • • P ^ }  
with the tensor q^ - ■ ■ and relating the parameters Ok according to 
[7] to the moments of the quark distribution function F(x) of the parton 
language

Ok = [  d xx k~2 F (x), (17)
Jo

for the moments of the ‘physical’ structure function W (x, Q2), we find

M„(Q2 ) =  f  dx x n ~2 W(x, Q2) =  1  em  On + 2 m . (18)
Jo n. m _0 m.

The formal Mellin transformation of (18) gives

= <19>
This relation has obvious an trouble with the spectrality at x  =  1 that has 
been mentioned above. This difficulty can be overcome by applying the 
JLD representation in a manner as the momentum analyticity is used for 
resolving the ghost pole problem.

The analytic moments can be written as follows

rl 2
U ± CUz J

The first step of our procedure is to find the weight function Un (a) in the 
representation (8) for the analytic moments. As a result, we have

Un (a) = Pn (oo) + —Ф̂ (<т) -  2 o -— -ФпМ -  (n -  1) [  ds$n (s). (21) 
n n Ja
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Here {7n (oo) is defined by the relation A4„(oc) =  Un (oo )/(n  — 1) and 
Фп (а) =  (сг/Л/2 ) ^ - 3 ^ 2 F ^ o / M ^ .

The weight functions H (^ ,a )  in (9) and Un (a) in the integral repre
sentation for the analytic moments (8) are related as follows

а д ^ й / а д я а д ,  (22)
Jo

where H(J3, a) = a — 2M 2 (1 — yT ~  ^ 2 ))- Thus, the functions (7„(<T) 
are the moments of the weight function H (/3,a) and, therefore, Un (a) can 
be restored by the Mellin transform ation.

Then, we represent the function a) in the form a) = H O(J3) + 
a ) , where the function H Q is connected with the parton distribution 

function, and define the function h(J3, a) =  a  — 2M 2 (1 — yT — /32) ) , 
for which one can write

7 -Moo

7 —too

where the difference Un (a) — {7n (oo) is expressed via the parton distribution 
function as follows

а д - а д > )  =
1 a 2 d

2M 2 n  do
a n — }.

M 2 n

Next, we represent the structure function as W (x ,Q 2 ) = Q2 ) +
w (x ,Q 2 ) , where Wg(x, Q 2) corresponds to the weight function and 
w (x, Q2 ), to h(0, a), and express Wo(a:, Q 2 ) in the form

W o M 2 ) =  [ \0 O [ f( /3 - ,x ,e )] H o (j3), (24)
Jo

f (0 ; x ,e )  =  ^ Т Г + 4 ^ -  1 -  2e(l -  У а д 2 ) .

The variables /3- and ^ + , if x  > x  =  1/V 1 +  4e2 ,

ж\/1 +  4er2

1 +  4еж2 +  4б2ж2
1 +  2e ±  2e

1 — x 2

1 +  4ex2
(25)
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are the roots of the equation x, б) =  0. Thus, we have

W0 (x,Q 2 ) = <
F ( P J -F ( 1 ) ,

F ^ - F ( P + ),
(26)

X < x < 1.

0 < x < x ,

The spectral property of Ио(ж, Q2), its vanishing at x =  1, comes from the 
relation =  1) =  fi+ (x — 1). The function W0 (x,Q 2) is a continuous 
function at x = x because j3+ (x) =  1.

For the function w(x, Q2), one finds

w(x,Q 2) = [  dft 0 [f(ft x,e)]0[g(fi-x,e)] </>($-, x, e ), (27)
Jo

where is defined in (24),

5(^5 =  [(/3/s)\/l + 4 e -  1] /б -  ,

with r  = r(ft;x,e) =  J(/3/s)vT + 4б — lj /б. The equation т(в;х,е) = 
1 has the root ftT =  (1 + e)s/x/T+46. The solutions of the equation 
g(ft; 77, б) =  0 are connected with the ^-variable (£_ =  £) and are of the 
form £± =  (yT + 4бх2 ±  1)/2бгг.

Fig. 1: Behavior o f functions p±, pT 
£, and g as function o f x  for e = 0.5.

Fig. 2: Behavior o f structure func
tions for e =  0.5.

The relative behavior of the functions P±, ftT , and g = s /y /l  +  4б as 
a function of x for б =  0.5 is shown in Fig. 1. This figure demonstrates

307



that the £ does not appear in the expression for the structure function, 
because the range of integration in Eq. (27) includes the interval from 
to /3T .

In Fig. 2, we plot the structure functions as functions of x  for e =  0.5. 
The parton distribution is taken in the form F(x) = x2 (l — x)4 (dashed 
curve). The physical structure functions, W(z,6), that depend on the 
target mass are obtained in two ways: the dotted curve was constructed by 
the “̂ ’’-scaling expression (19), and the solid line was constructed by using 
the JLD representation. This figure demonstrates the difference between 
these methods. The structure function obtained by the JLD representation 
has the correct spectral behavior at x  =  1 as compared with the “£”-scaling 
prediction.

Consider, as an example of the physical structure functions, the func
tion F3 . In the leading twist approximation [7], for the corresponding 
amplitude T3 , one can write

T  — V  1 V  -A2m+2j C2«\
3 m x 2 m ^ 0  ~ l ) !(2 m  +  2» ! ’

where, as usually, the moments A n in (28) are defined via the quark dis
tribution function F(x)

A n =  [  dyyn  2 F (y ) . 
Jo (29)

For the х-moments of the physical structure function xF3 (x, Q2) one finds

Mn (Q2) y '  j)! An+2j
>! ” ! (^ + 2>)

(30)

The Mellin transformation gives the expression (cf. [7,29])

xF 3 (x, Q2) 2 d F ,  F(y)
X  дх Л d y  y2 (1 +  б£2)

x 2 F ( ^  2х3б fi F(y)
£2 (1 +  4бх2) (1 + 4ex2)3/2 /f У y2 ’

(31)

where £ is defined by Eq. (3). In the limit e -> 0 we get x F3 (x, Q2 ) -> F(x).
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The analytic moments in this case have the form

= !o dz [n(1 - 622)2 ■ M  (f+J)nL - (з2)

where
F(z) = f d y ^ - .  (33)

Jz y2

From Eq. (32), one finds

= ^ )  + 2м г„)„+ 2 )К фі3)м
+ 12(2 -  т і^ Ф ^  (a) +  (13n2 -  34n +  (a) (34)
— 2n(n — l)(3n — 2)стФп (сг) — n2 (n +  2)(n — 1) J  ^ Ф п (з)], 

where Фп (<т) is expressed via the function (33) as follows

/  a \ ( " - 2)/2 - /  Га~\Фп̂ = (м2) F [ W  ’ (35)

We represent the function xF3 (x, Q2) in the form

xF3 (x, Q2) = W3 (x, Q2) = W3° \x ,  Q2) + w3 (x, Q2) .

Here РЕз0^ ,  Q2) is expressed via the quark distribution function as in 
Eq. (26) and w3 (x,Q 2') has the form

w3 (x, Q2) = f 1 d p 6 { f^ - x, e)] 0(z) 0(1 -  г) Ф(/3; x, e), (36)
Jo

where

= Ж “І + 5 )23(2? Г ) (З7)

+ 3L 1+3H  4 W ’+ 3 (1+5/q г i.
\  Zz J \  Zz J \  z )  \  z 2 )

The quantities and z connected by the relation

/5 =  77 (1 +  ez2 ) , 77 =  2 . (38)
V1 +
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Finally, we get

w3 (x, Q2 ) =  2c7/3 [  (39)
J z-

-  + (-1  +  2т72б)̂ 2 + ту2) F ^\z~ }

+ (r /V ?  + 3(1 + 2г/2ф 2 -Ь 5 ^ z_ J

where z_ = and (3- is defined in (25). Similar expressions can be 
found for the structure functions F  ̂ and F2 .

Conclusions. The Jost-Lehmann-Dyson representation reflecting the 
general principles of the local quantum field theory (covariance, Hermitic- 
ity, spectrality, and causality) has been applied for studying the inelastic 
lepton-hadron process. We have concentrated on the well-known trouble 
that is a characteristic feature of the so-called -scaling approach. We 
have argued that the approach based on the Jost-Lehmann-Dyson repre
sentation gives the self-consistent method of incorporating the target mass 
dependence into the structure function and does not lead to the conflict 
with the spectral condition.
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