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Analytic properties of the nonperturbative running expansion pa
rameter in quantum chromodynamics which is appeared within vari
ational perturbation theory are investigated. We argue that a re
quirement of the Kallen-Lehmann analyticity allows one to define 
a variational parameter the value of which is agreed well with non
perturbative data coming from the meson spectroscopy.

Perturbation theory is the basic method of quantum field theory for per
forming calculations involving only Lagrangian parameters. Its use along 
with the renormalization procedure allows important results to be obtained 
in quantum electrodynamics, in the theory of electroweak interactions, and 
in the description of the perturbative region of QCD. However, specific fea
tures of quantum field theory are such that a study of the structure of a 
quantum field model is not completed within the framework of perturba
tion theory, even in theories with a small coupling constant. In particular, 
as it is well known, a lot of problems of QCD require nonperturbative 
approaches. The development of nonperturbative methods has received a 
great deal of attention. In this paper we, according to ideas of the analytic 
approach to QCD [1-4], investigate analytic properties of the nonperturba
tive running expansion parameter which is appear in QCD [5,6] by using 
the method of variational perturbation theory (VPT) [7-10]. Within the 
VPT method a quantity under consideration is represented in the form 
of variational or so-called “floating” expansion which determines the algo
rithm of calculating corrections up to any order. Moreover, the existence 
of free parameters allows one to control the convergence properties of the 
VPT series.

The method described in Refs. [5,6] starts with the standard action of 
QCD, written as

S { A ,q , ^  =  S2(A) +  S2(Q) + S2^ )+ 5 S 3(A,9 ,^) + 5 2S4(A), (1)
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where S2 (A), including the gauge-fixing term, S2 (<?) and S2 (^) are the 
standard free actions of the gluon, quark and ghost fields. The term

q, p) describes the Yukawa interaction of gluons, gluons with quarks, 
and gluon with ghosts

S3 (A ,q,p) =  5з(А) +  53 (А,9 ) + 5з(А ,^), (2)
and the term S^A) in Eq.(l) generates the four-gluon vertex. By use of an 
auxiliary field the latter action can be rewritten as a trilinear action 
between A and x, so that S  becomes

S(A, q, p, x) =  S2 (q) + S2 (p) + S2 (x) + S(A, x) + gS3 (A, q, p ) . (3)
Following the ideas of the VPT method, we introduce auxiliary param

eters £ and £ and rewrite the action in the form

S (A ,q ,p ,x ) = S'0 (A ,q ,p ,x) + S'I (A ,q ,p ,x ') , (4)

=  Г  W  x) + &(q) + S2 (p)] + Г  , (5)
and

$  = gS3 { A ,q ,p ') - { r 1 - ^ [ S { A ,x }
+ з д + э д і - ^ - і э а д .  (6)

The exact value of the quantity under consideration, for instance, the 
Green function does not depend on the parameters £ and G However, 
the approximation of that quantity with a finite number of terms of the 
VPT series, which results from the expansion in powers of the action 
Sj(A, q, p, x), does depend on those parameters. We can employ the free
dom in the choice of the parameters £ and £ for construction of a new small 
parameter of the expansion. Analysis of the structure of the VPT series 
shows [5,6] that the two parameters must be related by £ — £3 in order 
to preserve gauge invariance. After a rescaling of the fields we obtain the 
following expression for a general Green function:

G i ■ •) = I  DQ C D  (• • •) V(A, q, p) exp(i So) , (7)

with 
n i a n—k

(8 )

ik 1 !.
^ [ І  +  к ^ - І ) ] ' ^ 3 S ^ A ' Q ' ^ РШ ^ А ) ] }  ,
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where
_________9_______  _ ________9_______ /о ч

53 [1 + < - i  -  1)]3/2 ’ [1 + -  1)]1/2 '

Here So is the standard free action of QCD and к is a parameter introduced 
for convenience which is set equal to 1 at the end of the calculation.

Analysis of the structure of this variational perturbation series shows 
that it can be organized in powers of the new small parameter a =  1 — £ 
if the standard coupling constant g is related to a by

Л =
C (1 -  a)3 ’

where A = ^2/(4тг)2 = a s / ^  and C is a positive constant. As follows 
from Eq.(10), at any values of the coupling constant g, the new expansion 
parameter a obeys the inequality 0 < a < 1. The parameter C is a positive 
constant which plays the role of a variational parameter. The original 
quantity which is approximated by this expansion does not depend on the 
auxiliary parameters C; however, any finite approximation depends on it 
on account of the truncation of the series.

One can define the parameter C using hadronic spectroscopy data [6] 
from the condition that the renormalization group /З-function at large 
enough values of the coupling constant behaves as /3(A) ~  —A. Such a 
behaviour corresponds to the singular infrared behavior of the running 
coupling constant A(Q2) ~  Q- 2  and leads to the linear growth of the non- 
relativistic static quark-antiquark potential at large distances. To obtain 
the nonperturbative /З-function here we use the renormalization constants 
including terms up to O(a9) and get

=  4 (2+ X - ? yW w (11)

with
< 9̂\a )  =  2 ^ a 2 +  9/Зой3 +  4 Аэ/Зо + Д  о4

+ 5flO/3o + 3 ^ a 5 + 6 fl5 /3 o +  2 1 ^  + A V e  (12)

+  7 f 21/90 +  2 8 ^  +  3Д ')  a7 +  8 І28(30 -I- 63^- +  15 Д  + Д ' )  a8

\ О С / /  \ О О л 4 0 °  у

+ 9f36^o +  126 Д  +  55 Д  +  3 Д ')  а9 ,
\  С  С/ С  ° )
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and the perturbative coefficients of the /З-function up to the four-loop level 
in the MS renormalization scheme taken from [11]

^0 =  И  ~ l n f ’

A =  102 -  у  n f  , (13)

^2
2857 5033 325 2

=  2 18 +  54 '

Дз
/149753 /1078361 6508 \=  (  6  +  3564&) -  (  1 6 2  +  2 7 ^ n f

/50065 6472 \  2 1093 ,
+  \  162 1 81 П } 1 729 П /  ‘

Here n j  is the number of quark flavors and £3 =1.2020569.
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In Fig. 1 we have shown the values of — ̂ k \X )/X  as functions of the 
coupling constant for parameters C3 = 4.1, C5 = 21.3, C7 = 61.1 and 
Cg =  132.7. One can see that at large values of the coupling constant A 
the function —/3^(A)/A ~  1 that corresponds to A(Q2) ~  Q - 2  at a small 
Q2 .

In oder to fix our parameters completely, we will use the information 
from the meson spectroscopy. The value of the coefficient a in the linear 
part of the quark-antiquark static potential Тцп (г) = err is cr ~  0.15 — 
-~0.20GeV2 [12-15]. The corresponding behaviour of a s (Q2 ) is

2Q 2 (14)

at a small value of Q2 . Here we will use the value a =  0.1768GeV2 [13]. 
By using the renormalization group method we get

In = <Ha,nf ) -  <Xa0 , n / ) , 
Wo

(15)

where
0(a,n z ) =  -

A dX
(16)

and the /З-function is defined by Eq.(ll). The behavior of cr(Q2) as a 
function of Q - 1  is shown in Fig.2 for normalization point Qg = lOOMeV.

The running expansion parameter a(Q2) as a function of Q2 is deter
mined from the renormalization group equation

Q2 = Qoexp Q - ( f k (a ) -  f k (a0 )) , 
/Po

where
r 1 \ } d X
Ш  Ck J M x )

(17)

(18)

with

/2(a)

/з(а)

624. . 5184, /  9 \
121 П — °  +  "121” n  \  +  2 /  ’
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Fig. 2: The tension cr(Q2 ) for normalization point Q Q =  lOOMeV and k = 
3,5,7,9.

2 6 0 493
=  — -------- -- --------h 3.096 ln(a) +  1.959 ln (l — a)

a 2 a 1 — a
-  2.527 In [(ж +  0.176)2 +  0.047] -  38.441 arctan (4.6ж +  0.81) , 

2 6 0 1 9 7
/s(a ) =  — -------- ---------- h 1.489 ln(a) +  0.942 ln (l — a)

a2 a 1 — a
+  13.13 1п(ж +  0.303) -  7.783 In [(ж +  0.071)2 +  0.114]

+  11.505 arctan (—2.965ж — 0.211) ,
/б(а) =  Д  +  0.833ln(a) +  0.527ln (l — a)

a 2 a 1 — a
-  5.339 In [(ж -  0.038)2 +  0.161] +  1.866 агс1ап(—2.489ж +  0.095)

+  4.658 In [(ж +  0.296)2 +  0.032] +  14.19 arctan (-5.629ж -  1.664) , 

f j M  — Д +  0.465 ln(a) +  0.326ln(l — a) 4-6.379 ln(x +  0.371) 
a2 a 1 — a

-  0.323 In [(ж +  0.238)2 +  0.095] -  11.333 агс!ап(3.235ж +  0.769)
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-  3.263 In [(x -  0.137)2 +  0.189] + 0.778 arctan (2.299x -  0.316) .

Thus the running parameter a(Q2) is defined as an implicit function 
of Q2 (a) via the equation (17). Consider the following function (with an 
accuracy of О (a2))

z = exp 2 12
a2 a

9 , 1 — a-------- h 21 In ------
1 — a a (19)2^o

with
Q2 ( c ‘ , / Л

The existence and regularity of the inverse function to the regular function 
z = z(a) in a vicinity of every point zQ =  z(a0 ) can be guaranteed if only 
the derivative z'(a0) ф 0. The function (19) is regular in any point a 
except a =  0 and a =  1 and У (a) =  0 for a =  —2. Consequently, an 
inverse function a = a(z) may exist in the neighborhood of any point z, 
except singular points of the function and branch point a = —2. One 
cannot make any conclusions about the existence of the inverse function 
to z = z(a) determined alongside the whole set z. However, if г '(a) 0 
in the region and we know that the inverse function exists, then it means 
that this inverse function is regular.

Fig. 3: The complex a-plane.
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1

Fig. 4: The complex z-plane.

Let us set the region in the complex а-plane as it is shown in Fig. 3 
and examine which lines will be the images of the cuts along negative part 
of real axes on the complex z-plane (see Fig. 4) and what is the role of the 
param eter C  in this case. Let a = pexp(up), then

z = , (20)

where

/  2 cos 2ip
\  P2

R(p, T?) exp
,2^o

12 cosp  

P

9(1 — p cos 99)
1 +  p2 — 2pcos9?

V l +  p2 -2 p co sy )
+  21 In -------------------------- 

P

T, . Сг Г—2sin2w 12sin<p
Л /b =  9«--------- ---------------- ~—

2po P2 P

—— — ----------+21 (arg(l -  p cos <p -  ip  sin 99) -  9?)
1 +  p2 — 2p cos 93
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with

arg(l — p cos — ip  sin p )  =  <

a rc ta n 1 — pcos £
7Г +  a rc ta n  ~

if 1 — pcos >  0;

—7Г +  a rc ta n

if 1 — pcos p  <  0,
—p sin  p  >  0:

if 1 — pcos p  <  0.
—p s in  p  <  0.

In order that the cuts on the a-plane are the images of the negative real 
z-axes. we have to put certain conditions on the parameter C. We have to 
choose parameter C2 as following:

C2 = , C2 (nj = 3) =  0.857.

In this case we have only one meaning of z0 in the г-plane for given a0 
from the a-plane.

However, the question about the existence of the inverse function a(z) 
is still unsolved. To resolve this it is necessary to have, for the equation 
(19), only one solution of a in the region a for any z from the г-plane. 
Even from a simple example of the function z = ea one can see that the 
inverse function may be a many-valued analytic function. To define it one 
has to pick out the principal branch on the a-plane which is the image of 
the г-plane (—7г < argz < я). For simplicity, we will change a —> 1/C, 
then

C22 = e x pk (2c2 + 12c - ^  +  2 1 ^ - 1 ) ) (21)

We put £ =  W(z). To extend £ to the complex plane, we must define all 
of the branches of W. We specify the boundary curves that maximally par
tition the £-plane and find the curves which separate the principal branch 
Wo from the branches and W_i. The £-pIane corresponding to (21) 
is shown in Fig. 5. All of the solid boundary lines in Fig. 5 reflect into 
the line running along the negative real axis on the г-plane, and all of the 
dash near-boundary lines in Fig. 5 reflect into the line lying just below the 
negative real axis on the г-plane. The negative real axis in the г-plane is 
called the branch cut for the logarithm, and the limiting value г =  0 is 
called the branch point. The curves which separate the principal branch 
Wo , from the branches ИА and W -t are:

1
21

4xy + 12y + 9y
(x — I)2 +  y2 + 21 arg{x — 1 + iy) =  ,
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where
£ = X + iy .

Branch points are £ =  0 and £ =  —1/2 (here z'(Q  = 0) and, consequently, 
C = W(z) will be a many-valued analytic function.

Similarly we determine the values of parameters Ck in higher orders.
With an accuracy O(a3) we get

z = R(p, p) exp(i(p, p ) ) , (22)

where

R(p, p) =  exp C3 /  2 cos 2ip
Ж  к P2

6 cos p------ -  -  48 In p -  
P

18 1 — pcos p
111 +  p2 — 2pcos p

+ ^ ln 1 +  ̂ ---------- 5184, / 2 \ 2 Q 4
2pcos<p +  - ^ - I n y  ( j J  +  P2 +  gPcosp
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І М  =  a .  r - a s i n s ^  
2^о L р2

6 sin W 
------------48</? —

Р
18 р sin с/?
111 +  р2 — 2pcos <р

6 2 4  м  ■ • ч 5 1 8 4  /п
+ ——arg(l — p c o sp  — zpsinр)  4- arg(2/9 + p co sp  +  zpsincp)

л 1 X 1

with 

arg (l — p c o sp  — ip sin p )

arctan v-1—pcosip ’

я  +  arctan , 1— /)COS<p ’

if 1 — pcos p  >0;

—7г +  arctan - ^ s in^1— pcosip ’

if 1 — p cos p  <  0,
—p s m p  >  0;

if 1 — p cos p  <  0, 
—psin p  <  0

and

arp (2 /9  +  p c o sp  +  ip s in p )  =

’ a r c t a n  2/9+pcosy ’ i f  2 / 9  +  P cos p  >  0;
% +  arctan 5 7 ^ ^  , if 2 /9  +  p cos p  <  0,

’ p s in p  >  0;
-%  +  arctan , if 2 /9  +  p cos p  <  0,

p s in p  <  0.
We fix param eters Cp C3 = 3.5, — 9.2, C5 = 19.1, =  34.1, and
C^ =  55.6. One can see the values of variational param eters Ck obtained do 
not too differ from th a t obtained earlier on basis of the meson spectroscopy 
data.

Thus within the variational perturbation theory we have examined a 
complex plane of running expansion param eter a =  l / £  and defined the 
branches of the many-valued function £ =  W (z). The requirement of 
certain analytic properties of the running expansion param eter allowed us 
to define the values of the variational param eters C* which turned out to 
be close to  the values coming from the nonperturbative information of the 
meson spectroscopy.
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