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Abstract

The phenomenological predictions of the 5D gauge-Higgs unifi-
cation models with SO(5) × U(1) gauge group, where the fifth di-
mension is compactified on an orbifold S1/Z2, are discussed. Shown
that the discovery of the two Z ′ bosons with close masses in ex-
periments at LHC would give strong support for the gauge-Higgs
unification and signal about the existence of extra dimensions.

1 Introduction

After the discovery of a Higgs boson at LHC [1]-[2] many fundamental
questions remains unresolved still now. One of such questions is the hi-
erarchy problem. Gauge-Higgs Unification (GHU) is one of the attractive
scenarios beyond the Standard Model, which provide a possible solution to
the hierarchy problem without supersymmetry. In this scenario, the SM
Higgs boson and the gauge fields are unified into higher dimensional gauge
fields. A remarkable fact is that the quantum corrections to Higgs mass
and potential are UV-finite and calculable due to the higher dimensional
gauge symmetry though the theory may be the non-renormalizable!

The fact that the Higgs boson ia a part of gauge fields implies that
Higgs interactions are governed by gauge principle and may provide specific
predictions in LHC physics.
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2 Realistic GHU models

The idea of the gauge-Higgs unification is rather old and the one was
proposed by Fairlie and by Forgacs and Manton in 1979 [3]-[6].

The first attempts have been based on embedding the SM electroweak
gauge group SU(2)L × U(1)Y to the large simple group G and thus gauge
fields live in spacetime with M4 × S2 topology. But unfortunately the
models in a simple variant were unrealistic as predicted too small higgs
boson mass and an incorrect the Weinberg angle θW (see Table 1).

G sin2 θW mW mZ mH

SU(3) 3/4 44 GeV 88 GeV 88 GeV

O(5) 1/2 54 GeV 76 GeV 76 GeV

G2 1/4 76 GeV 88 GeV 88 GeV

Table 1: Spectrum in the Gauge-Higgs Unification model by Manton.

New attempts of construction of realistic models are based on realiza-
tion of several key ideas, such as orbifolds, warped spacetime, Hosotani
mechanism of dynamical breaking gauge symmetry and some other.

Further we will shortly characterize the most promising realistic models
[7]-[11].

All of these models are formulated as 5D GHU models with SO(5) ×
U(1)X gauge group, where the fifth dimension is compactified on an orb-
ifold S1/Z2 with a compactification radius R. The models do not contra-
dict all precise electroweak experimental data and differ from each other
by structure of fermion sector.

The gauge group choice as SO(5)×U(1)X is caused by following reason.
At first, in the EW symmetry breaking SU(2)L × U(1)Y → U(1)EM the
Higgs field is an SU(2)L doublet in the fundamental representation. In the
Gauge-Higgs Unification scheme the Higgs field is a part of gauge fields
which are in the adjoint representation of the gauge group G. So this
implies that one needs to start with a larger gauge group G which contains
SU(2)L×U(1)Y as a subgroup. At second, group SO(5) is minimal group
which contain SM custodial symmetry group SO(4) ∼= SU(2)L × SU(2)R
as subgroup that allows to make control over the corrections to S and T
electroweak parameters. And at third, factor U(1)X allows to make control
over the correct value of Weinberg angle due to additional gauge coupling
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constant.
The models are defined in the 5D Rundull-Sundrum (RS) warped space

M4 × S1/Z2 with orbifold topology in the fifth dimension. The metric is
written as

ds2 = e−2σ(y)ηµνdx
µdxν + dy2, (1)

where ηµν = diag(−1, 1, 1, 1), σ(y) = σ(y + 2L) = σ(−y), and σ(y) = k|y|
for |y| ≤ L.

The RS space is viewed as bulk AdS space (0 < y < L) with AdS
curvature Λ = −6k2 sandwiched by the Planck (or UV) brane at y = 0 and
the TeV (or IR) brane at y = L. The warp factor zL = ekL � 1 is very large
( ∼ 1015). The KK mass scale is given by mKK = πk/(zL − 1) ∼ πkz−1

L .
In the fundamental region 0 ≤ y ≤ L the metric can be written in

terms of the useful conformal coordinate z = eky as

ds2 =
1

z2

(
ηµνdx

µdxν +
dz2

k2

)
. (2)

The 5D Lagrangian density has following structure:

L = Lgauge
bulk (A,B) + Lfermion

bulk (Ψa,ΨF , A,B)

+ Lfermion
brane (χ̂α, A,B) + Lscalar

brane(Φ̂, A,B) + Lint
brane(Ψa, χ̂α, Φ̂), (3)

where AM and BM are SO(5) and U(1)X gauge fields with the two asso-
ciated gauge coupling constants gA and gB, respectively; Ψa, a = 1, 2, 3, 4
are the 5D bulk fermions in the vector representation of SO(5) which con-
tains usual leptons and quarks; ΨF are nF the 5D bulk fermions in the
spinor representation of SO(5); χ̂α the Plank (y = 0) brane fermions in
the fundamental representation of SO(4) ∼= SU(2)L × SU(2)R (in par-
ticular with these brane fermions all 4D anomalies in SO(4) × U(1)X are
cancelled); Φ̂ are the Plank brane scalars which induces symmetry breaking
SU(2)R × U(1)X to U(1)Y on UV brane y = 0.

The explicit view of the all lagrangian density parts can be found in
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[7]-[11]. For example, the sum of the bulk matter parts can be written as

Lgauge
bulk + Lfermions

bulk = −Tr

(
1

4
F (A)MNF

(A)
MN +

1

2ξA
(f

(A)
gf )2 + L(A)

gh

)
−

−
(

1

4
F (B)MNF

(B)
MN +

1

2ξB
(f

(B)
gf )2 + L(B)

gh

)
+, (4)

+
∑
a

ΨaD(ca)Ψa +

nF∑
i=1

ΨFi
D(cFi

)ΨFi
,

D(c) = ΓAeA
M

(
∂M +

1

8
ωMBC [ΓB,ΓC ]−

−igAAM − igBQXBM))− cε(y) , (5)

where the gauge fixing and ghost terms are denoted as functionals with
subscripts gf and gh, respectively. The gauge field strengths are F

(A)
MN =

∂MAN − ∂NAM − igA
[
AM , AN

]
, F

(B)
MN = ∂MBN − ∂NBM . The gauge fix-

ing function is taken as f
(A)
gf = z2

{
ηµνDµAν + ξAk

2zDcz(Aqz/z)
}

with a
background field Acz (Az = Acz + Aqz), B

c
z = 0. In this paper we take

ξA = ξB = 1.
The SO(5) gauge fields AM are decomposed as

AM =
3∑

aL=1

AaLM T
aL +

3∑
aR=1

AaRM T aR +
4∑

â=1

AâMT
â, (6)

where T aL,aR(aL, aR = 1, 2, 3) and T â(â = 1, 2, 3, 4) are the generators of
SO(4) ' SU(2)L × SU(2)R and SO(5)/SO(4), respectively.

The electric charge satisfies to following equality

QEM = T 3L + T 3R +QX . (7)

In the fermion part we have Ψ = iΨ†Γ0, and ΓM matrices are given by

Γµ =

(
σµ

σ̄µ

)
, Γ5 =

(
1
−1

)
, σµ = (1, ~σ) , σ̄µ = (−1, ~σ) . (8)

The cε(y) term in the action, where ε(y) ≡ sign(y), gives a bulk kink
mass. The dimensionless parameter c plays an important role in controlling
profiles of fermions wave functions.
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The orbifold boundary conditions at y0 = 0 and y1 = L points are given
by following relations(

Aµ
Ay

)
(x, yj − y) = Pvec

(
Aµ
−Ay

)
(x, yj + y)P−1

vec ,(
Bµ

By

)
(x, yj − y) =

(
Bµ

−By

)
(x, yj + y),

Ψa(x, yj − y) = PvecΓ
5Ψa(x, yj + y),

ΨFi
(x, yj − y) = (−1)jPspΓ5ΨFi

(x, yj + y),

Pvec = diag (−1,−1,−1,−1,+1), Psp = diag (+1,+1,−1,−1). (9)

The Lagrangian density remains invariant under the parity transfor-
mations. The SO(5) symmetry is reduced to SO(4) ' SU(2)L × SU(2)R
by the orbifold boundary conditions. At this stage the four-dimensional
components Aµ of the five-dimensional gauge fields AM have zero modes
only in SO(4)× U(1)X block, whereas the extra-dimensional components
Ay have zero modes only in SO(5)/SO(4) block. The latter contains the
four-dimensional Higgs field, which is a doublet conserning both SU(2)L
and SU(2)R groups:

SO(5) : Ay =


φ1

φ2

φ3

φ4

−φ1 −φ2 −φ3 −φ4

 , Φ =

(
φ1 + iφ2

φ4 − iφ3

)
. (10)

After determination mass spectra of all boson and fermion fields we
can find Coleman–Weinberg effective potential. Should be note that 4D
Higgs field associated with nontrivial Wilson line phase. The Wilson line
phase for the zero modes is defined as

eiΘH/2 ∼ P exp

{
igA

∫ L

0

dy Ay

}
. (11)

At the tree level the value of the ΘH is not determined, as it gives van-
ishing field strengths. At the quantum level its effective potential Veff

becomes nontrivial. The value of ΘH is determined by the location of the

266



minimum of Veff . Without loss of generality one can assume that (Ay)45

component develops a non-vanishing expectation value. Let us denote the
corresponding component of ΘH by θH . If θH takes a non-vanishing value,
the electroweak symmetry breaking takes place.

Futher for the extra-dimensional component Az = (kz)−1Ay, which
contains the four-dimensional Higgs field H(x), we can write down follow-
ing expansion

A4̂
z(x, z) =

{
θHfH +H(x)

}
uH(z) + · · · ,

uH(z) =

√
2

k(z2
L − 1)

z for 1 ≤ z ≤ zL . (12)

The value of θH is determined by the location of the global minimum of
the effective potential Veff(θH). The Higgs boson mass is given by

m2
H =

1

f 2
H

d2Veff

dθ2
H

∣∣∣∣
min

, fH =
2

gw

√
k

L(z2
L − 1)

. (13)

Let is consider the case in which all SO(5)-spinor fermions ΨFi
are

degenerate at the tree level, so cFi
= cF (i = 1, · · · , nF ). At the one-loop

level only the KK towers whose mass spectra depend on θH contribute
to the effective potential Veff(θH). These spectra are given for the gauge
W and Z tower, for the top and the bottom quark tower, and for D and
fermion F tower. Contributions of other quarks and leptons turn out
exponentially suppressed and negligible.

The relevant parameters of the model are k, zL, gA, gB, ct, µ̃/µ2, cF and
nF . Other brane mass parameters are irrelevant so long as µα, µ̃, w � mKK.
These eight parameters are chosen such that mZ , αw, sin2 θW , mt, mb, and
mH take the observed values. This procedure leaves two parameters zL
and nF free.

With those given parameters, the one–loop effective potential is given
by

Veff(θH , ct, rt, cF , nF , k, zL, θW ) = 4I[QW ] + 2I[QZ ] + 3I[QD]

−12{I[Qtop] + I[Qbottom]} − 8nF I[QF ] ,

I[Q(q; θH)] =
(kz−1

L )4

(4π)2

∫ ∞
0

dq q3ln{1 +Q(q; θH)} ,
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QW = cos2 θWQZ = 1
2
QD = 1

2
Q0[q; 1

2
] sin2 θH ,

Qtop =
Qbottom

rt
=

Q0[q; ct]

2(1 + rt)
sin2 θH ,

QF = Q0[q; cF ] cos2 1
2
θH ,

Q0[q; c] =
zL

q2F̂c− 1
2
,c− 1

2
(qz−1

L , q)F̂c+ 1
2
,c+ 1

2
(qz−1

L , q)
,

F̂α,β(u, v) = Iα(u)Kβ(v)− e−i(α−β)πKα(u)Iβ(v) , (14)

where rt = (µ̃/µ2)2 and Kα and Iα are modified Bessel functions.
The value θH = θ1 at the minimum is determined as θH(zL, nF ). All

other quantities such as the mass specta of all KK towers, gauge couplings
of all particles, and Yukawa couplings of all fermions are determined as
functions of zL and nF .

The example of profile Veff(θH) is depicted in Fig. 1 with red curves.
For comparison Veff in the case of nF = 0 is also plotted with a blue curve.
When nF = 0 and zL = 107, the minima are located at θH = ±1

2
π.

Figure 1: The effective potential Veff(θH) for zL = 107. U = 16π6m−4
KKVeff

is plotted. The red curves are for nF = 3 with mH = 126 GeV. Veff has
minima at θH = ±0.258 and mKK = 3.95 TeV. The blue curve is for nF = 0
in which case mH = 87.9 GeV and mKK = 993 GeV.

Determined values for θH , mKK, mZ(1) , etc. are tabulated in Table 2 in
the case of nF = 5.
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Table 2: Parameters and masses in the case of degenerate dark fermions
with nF = 5. All masses and k are given in units of TeV.
zL θH mKK k ct cF mF (1) m

Z
(1)
R

mZ(1) mγ(1)

109 0.473 2.50 7.97× 108 0.376 0.459 0.353 1.92 1.97 1.98
108 0.351 3.13 9.97× 107 0.357 0.445 0.502 2.40 2.48 2.48
107 0.251 4.06 1.29× 107 0.330 0.430 0.735 3.11 3.24 3.24
106 0.172 5.45 1.74× 106 0.292 0.410 1.11 4.17 4.37 4.38
105 0.114 7.49 2.38× 105 0.227 0.382 1.75 5.73 6.07 6.08
104 0.0730 10.5 3.33× 104 0.037 0.333 2.91 8.00 8.61 8.61

3 Phenomenological predictions

One of the distinctive predictions of the SO(5)×U(1) gauge-Higgs unifica-
tion is the existence of the KK excited modes of neutral gauge bosons and
photon. There are four kinds of neutral gauge bosons at the TeV scale.
They are the first KK mode of Z boson Z(1) (Z(0) ≡ ZSM), the first KK

mode of photon γ(1) (γ(0) ≡ γSM ), the Z
(1)
R boson (Z

(0)
R is not exist), the

A4̂ boson.
Among them the A4̂ boson does not couple to SM particles so that

it escapes from detection in the Z ′ search. Z(1), γ(1), and Z
(1)
R are the

candidates for Z ′ bosons.
To evaluate the production and decay rates of Z ′ bosons is needed

to know four-dimensional Z ′ couplings of quarks and leptons. They are
obtained from the five-dimensional gauge interaction terms by inserting
wave functions of gauge bosons and quarks or leptons and integrating over
the fifth-dimensional coordinate. The couplings of the photon, Z boson
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and Z
(1)
R boson KK towers can be written as

L ⊃
∑
n,i

Aγ(n)
µ

[
gγ

(n)

uiL
ūi
i

Lγ
µuiL + gγ

(n)

uiR
ūiRγ

µuiR + gγ
(n)

diL
d̄iLγ

µdiL + gγ
(n)

diR
d̄iRγ

µdiR

+gγ
(n)

eiL
ēiLγ

µeiL + gγ
(n)

eiR
ēiRγ

µeiR

]
+
∑
n,i

Z(n)
µ

[
gZ

(n)

uiL ū
i
Lγ

µuiL + gZ
(n)

uiR ū
i
Rγ

µuiR + gZ
(n)

diL d̄
i
Lγ

µdiL + gZ
(n)

diR d̄
i
Rγ

µdiR

+gZ
(n)

νiL ν̄
i
Lγ

µνiL + gZ
(n)

νiR ν̄
i
Rγ

µνiR + gZ
(n)

eiL ēiLγ
µeiL + gZ

(n)

eiR ēiRγ
µeiR

]
+
∑
n,i

Z
(n)
Rµ

[
g
Z

(n)
R

uiL
ūiLγ

µuiL + g
Z

(n)
R

uiR
ūiRγ

µuiR + g
Z

(n)
R

diL
d̄iLγ

µdiL + g
Z

(n)
R

diR
d̄iRγ

µdiR

+g
Z

(n)
R

νiL
ν̄iLγ

µνiL + g
Z

(n)
R

νiR
ν̄iRγ

µνiR + g
Z

(n)
R

eiL
ēiLγ

µeiL + g
Z

(n)
R

eiR
ēiRγ

µeiR

]
,

where the superscript i denotes the generation, i.e., (u1, u2, u3) = (u, c, t),
etc. The four-dimensional gauge couplings are obtained by overlapping
integrals of wave functions (which contains the combination of Bessel func-
tions) and cannot be written in simple analytical form. Explicit formulas
for the gauge couplings can be found in papers cited above.

The relevant couplings of the Z ′ bosons for fixing θH parameter are
tabulated in Table 3 and Table 4.

Table 3: Masses, total decay widths and couplings of the Z ′ bosons to
SM particles in the first generation for θH = 0.114. Couplings to µ are
approximately the same as those to e.

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z 0.0912 2.44 0.257 -0.314 -0.200 -0.115 0.0573 0.172

Z
(1)
R 5.73 482 0 0 0 0.641 -0.321 -0.978

Z(1) 6.07 342 -0.0887 0.108 0.0690 -0.466 0.233 0.711

γ(1) 6.08 886 -0.0724 0.0362 0.109 0.846 -0.423 -1.29

Z(2) 9.14 1.29 -0.0073 0.0089 0.0056 0.0055 0.00274 0.0086
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Table 4: Masses, total decay widths and couplings of the Z ′ bosons to SM
particles in the first generation for θH = 0.073.

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z
(1)
R 8.00 553 0 0 0 0.588 -0.294 -0.896

Z(1) 8.61 494 -0.100 0.123 0.078 -0.426 0.213 0.650

γ(1) 8.61 1040 -0.0817 0.041 0.123 0.775 -0.388 -1.18

The decay width of the Z ′ boson is given by

ΓZ′ =
∑
i

mZ′

12π

((
gZ

′
iL

)2
+
(
gZ

′
iR

)2

2
+ 2gZ

′

iLg
Z′

iR

m2
i

m2
Z′

)√
1− 4m2

i

m2
Z′
. (15)

Here i runs over all fermions including SM fermions and exotic fermions.
The contribution of its decay to W+W− is very small and can be neglected.
The evaluated ΓZ′ for θH = 0.114 is summarized in Table 3. It is seen that
all of Z

(1)
R , Z(1), and γ(1) have large decay widths (300 ∼ 900 GeV) in quite

contrast to the narrow width of the Z boson. It is mainly due to the large
couplings of right-handed quarks and leptons.

Now consider the dilepton production cross sections through the Z ′

boson exchange together with the SM processes mediated by the Z boson
and photon. The dependence of the cross section on the final state dilepton
invariant mass M`` is described as

dσ(pp→ `+`−X)

dM``

=
∑
q

∫ 1

−1

d cos θ

∫ 1

M2
``

E2
CMS

dx1
2M``

x1E2
CMS

× fq(x1,M
2
``)fq̄

(
M2

``

x1E2
CMS

,M2
``

)
dσ(q̄q → `+`−)

d cos θ
,(16)

where ECMS is the center-of-mass energy of the LHC and fq’s are the parton
distribution functions(PDFs) for q quark.

Figure 2 shows the differential cross section for pp → µ+µ− together
with the SM cross section mediated by the Z boson and photon for θH =
0.114 (nF = 5, zL = 105). The deviation from the SM is very small below
3 TeV because the couplings of the Z boson or photon to SM fermions
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are almost the same as in the SM. For this reason it is difficult to see the
signals of the gauge-Higgs unification at 8 TeV LHC experiments. In the
case of θH = 0.251 (nF = 5, zL = 107), the deviation from the SM is large
and this value is excluded by the 8 TeV LHC experiments.

Figure 2: The differential cross section multiplied by an integrated lumi-
nosity of 20.6 fb−1 for pp→ µ+µ−X at the 8 TeV LHC for θH = 0.114 (red
solid curve) and for θH = 0.251 (blue dashed curve). The black dashed
line represents the SM background.

On the other hand, at 14 TeV LHC experiments, we expect the signals.
Figure 3 shows the differential cross section dσ/dMµµ in the range 3 TeV <
Mµµ < 9 TeV for θH = 0.114 and 0.073. The contributions from Z(2) boson
and higher KK modes are negligible because the couplings are very small
and the widths are very narrow (see Table 4). One sees a very large
deviation from the SM, which can be detected at the upgraded LHC.

4 Conclusion and remarks

In the SO(5)×U(1) gauge-Higgs unification the three gauge bosons, Z
(1)
R ,

Z(1), and γ(1), appear as Z ′ bosons in dilepton events at LHC. It is in-
teresting that the masses of these bosons turn out around 6 (8 TeV) for
θH = 0.114 (0.073), which is exactly in the region explored at the 14 TeV
LHC.

As right-handed quarks and leptons have large couplings to those Z ′

bosons, the widths of those bosons become large; the decay widths of Z
(1)
R ,
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Figure 3: The differential cross section for pp → µ+µ−X at the 14 TeV
LHC for θH = 0.114 (red solid curve) and for θH = 0.073 (blue dashed
curve) . The nearly straight line represents the SM background.

Z(1) and γ(1) are 482, 342 and 886 GeV for θH = 0.114.
As the difference in masses of Z(1) and γ(1) is small, there should appear

two peaks in dilepton events. Due to the large widths the excess of events
over those expected in the SM should be seen in much wider range of
energies. For θH = 0.114 an excess due to the broad widths of the Z ′

resonances should be observed above 3 TeV in the dilepton invariant mass.
The discovery of the Z ′ bosons in the 3 - 9 TeV range would give strong
support for the gauge-Higgs unification, signaling the existence of extra
dimensions.

Let’s give some remarks concerning Higgs interactions. In realistic
GHU models all Higgs couplings HWW , HZZ, Hcc̄, Hbb̄, Hττ̄ are sup-
pressed by a factor cos θH at the tree level, moreover coupling HZγ is
absent on 1-loop level. The corrections to Γ[H → γγ] and Γ[H → gg] due
to KK states amount only to 0.2% for θH = 0.114. Hence may conclude
that Br(H → j) ∼ BrSM(H → j), where j = WW , ZZ, γγ, gg , bb̄, cc̄,
τ τ̄ and σprod(H) · Br(H → γγ) ∼ (SM)× cos2 θH . The signal strength in
the γγ production relative to the SM is about cos2 θH . It is about 0.99 for
θH ∼ 0.1. This contrasts to the prediction in the UED models in which
the contributions of KK states can add up in the same sign.
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