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Abstract

We investigate target mass corrections to the unpolarized struc-
ture functions of the deep-inelastic scattering by using the tradi-
tional Georgi–Politzer method and another approaches. The recent
methods for solving the ‘threshold’ problem arisen in the limit as
the Bjorken variable x tends to unity are discussed. We present re-
sults of a new approach and demonstrate that, in the large-x region,
target mass corrections to structure functions calculated by using
this method noticeably differ that other approaches give.

1 Introduction

To compare correctly QCD predictions with experimental data of the deep-
inelastic scattering at low Q2 scales, Q2 . 1 − 2 GeV2, it is important
to take into account in the analysis additional power terms are known
as target mass corrections (TMCs) arising from purely kinematic effects
associated with finite mass of the nucleon target. In the QCD analysis of
the deep-inelastic scattering data the operator product expansion (OPE)
method is widely used. However the OPE was derived in the massless limit
and if a finite mass of the nucleon target is included, then the TMCs arise.
Many years ago, the OPE was used to include TMC effects systematically
via the Nachtmann ξ variable [1] by Georgi and Politzer (GP) [2]. The GP
method, named also as ξ-scaling method, showed the importance of the
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accounting of TMCs. However within this method there was a problem to
describe the structure functions behavior as the Bjorken variable x tends
to unity. This problem was widely discussed in the literature ever since its
appearance and continues to be discussed until now (see, e.g., [3–5]).

In the present work we extend our previous analysis [5] and analyze
several frameworks for the TMCs in order to improve a knowledge of TMC
effects for the unpolarized proton structure functions.

2 Target Mass Corrections

The inclusive cross section of the deep-inelastic scattering process can be
written as dσ ∼ LµνWµν in terms of leptonic and hadronic tensors, Lµν

and Wµν . The hadronic tensor Wµν is parameterized by structure functions
which is defined via structure functions Fi=1,2,3(x,Q

2).1

2.1 Operator product expansion: GP approach

According to the GP approach the structure functions are given by [6]

F1(x,Q
2) =

x

ξρ
F 0
1 (ξ,Q2) +

εx2

ρ2
h2(ξ,Q

2) +
2ε2x3

ρ3
g2(ξ, q

2) , (1)

F2(x,Q
2) =

x2

ξ2ρ3
F 0
2 (ξ,Q2) +

6εx3

ρ4
h2(ξ,Q

2) +
12ε2x4

ρ5
g2(ξ, q

2) , (2)

h2(ξ,Q
2) =

1∫
ξ

F 0
2 (y,Q2)

y2
dy, g2(ξ,Q

2) =

1∫
ξ

dy

1∫
y

F 0
2 (z,Q2)

z2
dz ,

F3(x,Q
2) =

x

ξρ2
F 0
3 (ξ,Q2) +

2εx2

ρ3
h3(ξ, q

2) , h3(ξ,Q
2) =

1∫
ξ

F 0
3 (y,Q2)

y
dy .

(3)
Here x = Q2/2ν = Q2/2(q · P ) is the Bjorken scaling variable, ξ is the
Nachtmann variable [1]

ξ =
2x

1 +
√

1 + 4εx2
=

2x

1 + ρ
, (4)

1Other structure functions, i = 4, 5, 6, are proportional to the lepton mass and are
therefore negligible for the kinematics of the deep-inelastic region.
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ρ =
√

1 + 4εx2, ε = M2/Q2, M is the target mass, the functions F 0
i (ξ,Q2)

= lim
M→0

Fi(x,Q
2)x=ξ.

The expressions (1)–(3) are known to suffer from the “threshold prob-
lem”, in which the target mass corrected structure functions do not vanish
as x→ 1, and are in fact nonzero in the kinematically forbidden x > 1 re-
gion. A numerous of attempts have been made to ameliorate the threshold
problem using various prescriptions.

2.2 Known approximations

Recently, Kulagin and Petti (KP) [7] showed that by expanding the target
mass corrected structure functions to leading order in 1/Q2, the resulting
functions have the correct x→ 1 limits (see also Ref. [8]).
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Figure 1: Left panel: The behavior of the structure function F2 obtained vs
the Bjorken variable x. The solid (red) line corresponds to result of 1/Q2

KP approximation, the dash-dotted (blue) line – 1/Q4 approximation, the
dashed (black) line – the GP result, and dotted (green) line – without tar-
get mass corrections. Right panel: Ratio of the target mass corrected F2

structure function by using the 1/Q2 (solid, red) and 1/Q4 (dash-dotted,
blue) the KP approximation, and GP approximation (dashed, black) com-
pared with the structure function without target mass corrections.

While avoiding the threshold problem, this prescription, however, raises
the question of whether the 1/Q2 approximation is sufficiently accurate
for structure functions near x ≈ 1 at moderate Q2. To test the conver-
gence of the 1/Q2 expansion at large x, we further expand the GP result to
include O(1/Q4) corrections. Figure 1 illustrates the accuracy of the KP
approach. In order to isolate the target mass effect from the specific form
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of the structure function parametrization we take for simplicity the form
F2 ∼ (1− x)3. One can see that both the 1/Q2 and 1/Q4 approximations
are found to reproduce the GP result well up to x ≈ 0.6, but significant
deviations are visible at larger x. The reliability of a low order 1/Q2 ex-
pansion is therefore questionable at large x values, and hence their efficacy
in removing the x→ 1 threshold problem.

An alternative approach to TMCs relies on the collinear factorization
(CF) formalism [9–11], which makes use of the factorization theorem to re-
late the hadronic tensor for lepton–hadron scattering to that for scattering
from a parton. Here parton distributions are formulated directly in mo-
mentum space, avoiding the need to perform an inverse Mellin transform
to obtain the PDF from its moments. The first study of TMCs within CF
was made by Ellis, Furmanski, and Petronzio (EFP) [9]. Using the same
notation as above, the EFP results for the target mass corrected structure
functions are given by

FEFP
1 (x,Q2) =

2

1 + ρ
F 0
1 (ξ,Q2) +

(ρ2 − 1)

(1 + ρ)2
h2(ξ,Q

2) , (5a)

FEFP
2 (x,Q2) =

1

ρ2
F 0
2 (ξ,Q2) +

3ξ(ρ2 − 1)

ρ2(1 + ρ)
h2(ξ,Q

2) , (5b)

FEFP
3 (x,Q2) =

1

ρ
F 0
3 (ξ,Q2) +

2(ρ2 − 1)

ρ(1 + ρ)2
h3(ξ,Q

2) , (5c)

where again the F 0
i refer to the uncorrected structure functions. Because

the massless functions F 0
i are evaluated at ξ, the target mass corrected

structure functions will suffer from the same threshold problem as in the
OPE result in Eqs. (1)–(3). So, in both the EFP and OPE treatments of
TMCs, the resulting structure functions are nonzero for x > 1.

Other approach for target mass corrected structure functions is the ap-
proach of Steffens and Melnitchouk (SM) [3] which effectively corresponds
to use of a new variable

ξSM = x
1 +
√

1 + 4x2

1 +
√

1 + 4εx2
, (6)

and the modified moments A(SM)
n ≡

∫ ξ0

0

dξ ξn F (ξ, ξ0) , with ξ0 ≡ ξ(x =

1) = 2/(1 +
√

1 + 4ε) < 1 ( see Refs. [5] for more details).
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2.3 JLD-approach

Let us now pass to new approach which based on the Jost-Lehmann-Dyson
(JLD) integral representation [12, 13]. As it was shown by Solovtsov [14]
that the threshold problem is a similar to the problem that appears for
an invariant charge in quantum chromodynamics, when the violation of
the general principles of the theory, which are reflected in the Källén–
Lehmann representation, leads to unphysical singularities. A solution of
this problem was proposed proposed by Shirkov and Solovtsov2 [15] (see
Ref. [16] as review). By using the JLD integral representation it was shown
[14] that the natural scaling variable is a new variable ξS,

ξS = x

√
1 + 4ε√

1 + 4εx2
, (7)

which leads to the moments Mn(Q2) that are analytic functions. In this
case, the spectral property for the structure functions is satisfied automat-
ically, and no problem arises in the limit as the Bjorken variable x tends
to unity (see, e.g. Refs. [5]). Note the proof of the JLD representation is
based on the most general principles of the theory, such as the covariance,
Hermiticity, spectrality, and causality.

According to JLD-approach, instead of the function F 0
i (ξ) we must use

F 0
i (x,Q2) =

F
0
i (ξ−)− F 0

i (1) , 0 6 x < x ,

F 0
i (ξ−)− F 0

i (ξ+) , x 6 x 6 1 ,
(8)

where x = 1/
√

1 + 4ε2,

ξ∓(x) =
x
√

1 + 4εx2

1 + 4εx2 + 4ε2x2
·
[
1 + 2ε∓ 2ε ·

√
1− x2√

1 + 4εx2

]
. (9)

Follow this recipe, we transform Eqs. (1)–(3) and, for example, for the
structure function F3 it turns out:
for x 6 x

F S
3 (x,Q2) =

x · F (0)
3 (ξ−(x), Q2)

ξ−(x)(1 + 4εx2)
+

2εx2√
(1 + 4εx2)3

h3(ξ−(x), Q2), (10a)

F S
3 (x,Q2) =

x

(1 + 4εx2)

[
F

(0)
3 (ξ−(x), Q2)

ξ−(x)
− F

(0)
3 (ξ+(x), Q2)

ξ+(x)

]
+(10b)

2This analytic approach called the Analytic Perturbation Theory (APT).

184



+
2εx2√

(1 + 4εx2)3

[
h3(ξ−(x), Q2)− h3(ξ+(x), Q2)

]
for x 6 x 6 1.

3 Numerical result

In our calculations we take the distributions of light u, d and s quarks and
anti-quarks from Ref. [17], where was fixed the next to leading (NLO) value
of the parameter ΛQCD = 0.248 GeV. We have verified that distributions
provided in other papers, for example, in Refs. [18] in the region of x > 0.2,
for which become essential the TMCs, very close to distributions given in
Ref. [17].
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Figure 2: The behavior of the proton structure function F1 (left panel) and
F2 (right panel) vs the Bjorken variable x at Q2=1 GeV2. The solid (red)
line corresponds to our result obtained by using the JLD-approach, the
dashed (blue) curve reflects the result obtained by standard GP method,
and the dotted (green) line is the initial proton distribution [17].

Figure 2 shows the behavior of the proton structure function at Q2=1
GeV2 for the structure functions F1 (left panel) and F2 (right panel). One
can see that target mass corrections to these structure functions calculated
by using the JLD-approach are noticeably differ, in the large-x region, that
the traditional GP method gives. The same we obtain for the proton struc-
ture function F3 of the neutrino nucleon deep inelastic scattering obtained
by using the expressions (3) and (10) (see Ref. [19] for more details).
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4 Conclusion

In this report we have sought to discuss the the ‘threshold’ problem in the
standard TMC analysis. Historically it has been argued that the problem
in the threshold region exists because at low Q2 the higher twist contribu-
tions cannot be neglected. The inclusion of target mass corrections in the
fits of deep-inelastic scattering data is important as change the magnitude
of the higher twist terms needed to describe the experimental data.

We discussed available to target mass corrections approaches and sug-
gested to use the new JLD-approach. We observed that at low Q2 ∼
1÷ 2 GeV2 the TMCs to structure functions calculated by using the JLD-
approach noticeably differ from the standard GP-method or another ap-
proaches results. We believe that the JLD-approach including target mass
effects will be useful in extracting the magnitude of the structure func-
tions from the experimental data and to precisely extract the higher twist
contribution.
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