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Abstract

The quasipotential approach in quantum field theory is used to 
derive relativistic threshold resummation factors in quantum chromo
dynamics.

1 Introduction
As is well known, for interection V(r) =  —a fr  (such as the electric-Coulomb 
and color-Coulomb interections) the nonrelativistic Schrodinger equation 
leads to the known S-wave Gamov-Sommerfeld-Sakharov factor [1-3]

Q _  Ащ- у  _  ®
^ПГ — -I / V  X ’ y *nr —1 6X p( -A-nr) ^nr

(1)

which is related to the wave function of the continuous spectrum at the 
origin by IV'(O)|2 . Here 2unr is the relative velocity of two particles. For two 
particles of equal masses m the relative velocity is given in terms of their 
centre-of-mass energe y/s by [4-9]

„ Vs2 — 4sm2 ....
2wnr =  - ----- z - 2 - .  2)s — 2m2

This gives 2r\jr ~  2^/1 — ^m^js when ^fs ~  2m and 2vnr —> 1 when s —> oo. 
An expansion of (1) in a power series in the coupling constant a  reproduces 
the threshold singularities of the form (a/v)", v = -^1 — 4m2/s . Thus, the
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real expansion parameter in the threshold region is a/v. Obviously, it be
comes to be singular, when the velocity v —* 0. A description of quark- 
antiquark systems close to threshold thus does not permit’ us to cut off the 
perturbative series even if the expansion parameter as is small. The problem 
is well known from QED [10].

The resummation can be performed on the level of potential considera
tion. The corresponding nonrelativistic expression can also be obtained for 
higher £ states (see, e.g., [11]). In the relativistic theory the nonrelativistic 
approximation needs to be modified. The corresponding relativistic resum
mation of the S-factor has been found in [12]. Its applications for describing 
some hadronic processes can be found in [13-15]. The relativistic resumma
tion of the P-factor (  ̂=  1 state) has been found in [16]. In the same place 
suggest new model expression for R(s) in which threshold singularities are 
summarized into a main potential contribution.

In this note we derive a relativistic L-factor for higher t  states.

2 Relativistic threshold resummation factors
The resummation factors appear in the parametrization of the imaginary 
part of corresponding quark current correlators, 7?(s). In QED, the function 
R(s) can be approximated by the Bethe-Salpeter (BS) amplitude of two 
charged particles, XBS(̂ )> at a; =  0 [17]. The nonrelativistic replacement of 
this amplitude by the wave function, which obeys the Schrodinger equation 
with the Coulomb potential, leads to the formula (1) with the substitution 
a —> 4as/3, for QCD.

A starting point of our consideration is the quasipotential (QP) approach 
proposed by Logunov and Tavkhelidze [18], in the form suggested by Kady- 
shevsky [19]. The possibility of using the QP approach for our task is based 
on the fact that the BS amplitude, which parameterizes the physical quantity 
R (s \  is taken at x  =  0, therefore, in particular, at the relative time т =  0. 
The QP wave function is defined as the BS amplitude at r  — 0, and R(s) can 
be expressed through the QP wave function V'QP(P ) by using the relation

XBS(^ =  0) =  ydfip^Q P (p), (3)

where ddp =  (dp)/[(2?r)3 Ep] is the relativistic three-dimensional volume 
element in the Lobachevsky space realized on the hyperboloid E 2 — p 2 = m 2 .
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In the following we will consider the case of two particles with the same 
masses m and use the system of units c =  h = m =  1.

The proper Lorentz transformation means a translation in the 
Lobachevsky space. The role of the plane waves corresponding to these 
translations are played by the following functions

t f p . r H ^ p - p - n ) - 1- * ,  (4)

where r =  nr and n2 =  1. These functions correspond to the principal series 
of unitary representations of the Lorentz group and in the nonrelativistic 
limit (p 1, r  »  1) £(p, r) —> exp(ip • r). The functions (4) obey the 
following conditions of completeness and orthogonality

У  d^p C(p, r) f  (p, г') =  5(r -  r'),

(5)
У  dr £(p, r) f  (k, r) =  (27T)3 5(p(—)k ),

where the relativistic momentum-spase «^-function is ^(p(—)k) =
+ p2 <5(p — k). The QP wave functions in the momentum and relativistic 

configuration representations are related as follows:

V>(r) =  У  dQp f(p,r)V>QP (p),

(6)
^ р (р ) =  У * С (р ,г )^ (г ).

The QP equation in the momentum spase has the form

(2E -  2Ep ) ^QP(P ) =  У  d^k V (p(-)k) ^Qp(k). (7)

For a spherically symmetric potential the ^-transform of (7) leads to the 
equation

У  dQp dr' (2E -  2EP) £(p, r) f  (p, r') V(r') -  V(r) ^ (r), (8)

where the right hand side is local. Here the transform of the potential is 
given in terms of the same relativistic plane wave by
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V (p(-)k) =  J  drC (p(-)k ,r) V(r). (9)

We note that the left hand side of equation (8) can be rewritten in a non
integral form by using the relatios (6) and the operator of the free Hamilto
nian [20, 21]

Яо =  cosh г— +  -  sinh г— -  — exp г— , (10)\  or J r \  or J 2r2 \  or J

where is the angular part of the Laplacian operator. The relation

#o£(p,r) =  £ P £(p, r)

allows us to express the equation (8) in terms finite differences

(2 Я -2 Я о )^ (г )  =  У (г)^(г). (11)

Solutions of this equation, in principle, can contain arbitrary functions of 
r with period i, the so-called the г-periodic constants, which appear in the 
solutions due to the finite difference nature of the Hamiltonian (10). For 
some problems, such as defining the bound state spectrum, this г-periodic 
constant is not important. However, for the purpose of extracting resumma
tion factors, one must develop a method which avoids this ambiguity. For 
this instead of the equation (11) we will to use the equation (8).

By using of the expandings

€(P, r) =  V  (2 £  +  ^P<(coshxp, r) Pt  ( ,  

\ P r  /
(12)

"  r \  qr )<=o '
and also formula [21]

„ (rn«h v ri -  (  d  A1

* ’ H£+1) \d c o sh x / \s in h x /  ’

the equation (8) transformed to the form
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I / -  2 - Ь Л  
0

v (  d  1 f  r 'sm r'x ' _  V (r)^ (r , x)
\d c o sh x '/  sinhx' J (—r')^ + 1) £ ’ r ’

о
(13) 

where Pt^z) is a Legendre function of the first kind, x  is the rapidity which 
related to E  by E  =  cosh x, and

Pr(cosh x, r) = —  ̂ ^ h  *  ( - r ) {e+1} P . ^ / c o s h  x) (14)

is the solution of equation (11) in the case when the interaction is switched 
off (V(r) s  0). Here (—r)^+ 1  ̂ is the generalized power [21, 22]

(_ г )(<+!) =  / + і Г (г г  +  1 \

where Г(г) is gamma-function.
Consider the Coulomb potential defined in relativistic configuration space 

as

V(r) = ~ .  (15)
r

The ^-transformation of (15) gives the potential in momentum space

---------Дт—  , (16)
ХдзшЬхд

where the relative rapidity хд corresponds to A  =  p (—)k and is defined 
in terms of the square of the momentum transfer by Q2 = — (p — k)2 = 
2(созЬхд — 1)- For large Q2 the potential V(A) behaves as (Q2 InQ2 )- \  
which reproduces the principal behavior of the QCD potential proportional 
to as(Q 2)/Q 2 with a s (Q2) being the QCD running coupling. This property 
of the quasipotential (15), its QCD-like behavior, has been noted by Savrin 
and Skachkov in [23].

Note that solutions of Eq. (11) for the Coulomb potential have been 
investigated in [24]. Other forms of the QP equation with the Coulomb 
potential have been considered in [25].
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To solve quasipotential equation (13) with the potential (15) we use the 
method developed in [12] and [26]. In this case a solution of quasipotential 
equation (13) with the Coulomb potential (15) one can seek in the form

x)
(—r)(^+i)

0
У  dC exp ire) Re(c, x ) , (17)

where the (^-integration is performed in the complex plane over a contour 
with end points a  and /3 as in [12, 26]: a = —R — ie, 0  = —R + ie, R  
oo , E —» +0. Substituting (17) into (13) and taking into account that

OO
— / dr'sin(r'x ') exp(zr'£) =
І7Г J

0

1 x'
гтг x '2 -  C2 ’

we arrive at the equation

0 / X е

( - 1 /  [  d ^ R ^ x H ^ - ^ : )
J \a c o sn £ /
a

(sinh C)2£+1 (2 cosh x  — 2 cosh £) x

/ \ £ / \ 1 £

x / X  / J n = l a
(18)

For t  — 0 state this approach leads to the following relativistic S'-factor 
[12]:

=  1---- Г X W ’ (19)l - e x p [ - X ( x ) ]  smhx
where x  is the rapidity which related to s by 2 cosh x  — x/s- The function 
X(x) in Eq. (19) can be expressed in terms of the velocity v = -^1 — 4/s, 
where y/s is the center of mass energy, as X (x)  =  тгауТ — u2/v. The S- 
factor is involved into the expression for the function R(s) that corresponds 
to the vector quark current. However, to perform a threshold resummation 
in the axial-vector case one has to use the relativistic P-factor [16], which 
corresponds to =  1 state.

To derive P-factor for I  =  1 state [16] we note that in the nonrelativistic 
case the S-factor is defined by the wave function at r =  0. In the relativistic
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case one has to use the value of QP wave function at r = i [12]. Indeed, 
according to Eqs. (3), (4) and (6), one finds a relation between the required 
BS amplitude and the QP wave function in the form

XBS(^ =  0) =  ^ (r  =  i) •
The F-factor in the nonrelativistic case [11] is defined by derivative of the 
partial wave function for t  — 1 state at r =  0. In the relativistic case, instead 
of the derivative, one has to use its finite difference analog [21, 22]

1
i△* exp -  1 (20)

Thus, the relativistic F-factor is connected, as one can expect, with QP 
partial wave function <Pi(r,x) (  ̂=  1) and it is defined by

F(x) =  lim 
r—n

3 ГУ І(Л ХУ
sinh x  т (21)

Solving the equation (18) for I = 1 state we arrive at the following expression 
for the function хУ

^ , x }  = G exp[(zr + 2)<]
“ST--- 7-------77(ex p < -ex p x )4

a

e x p < -e x p (-x ) 
exp C — exp x

-2+iA

, (22)

where

Л _  Q

2 sinh x (23)

Performing in (22) (^-integration in the complex plane along a contour with 
end points a  and /3 one obtain the resulting solution which does not contain 
the г-periodic constant in the form

Vh^x) = Ci(x)
2r sinh(7rr) 

(̂2)
7 ^  ехр[(гг +  2)x] 
/ (exp x + exp x)4

—oo

expx +  exp(—x)
exp x + exp x

-2+iA

(24)
The function (24) can also be represented in terms of hypergeometrical func
tion obtained in [21, 24] by
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^i(r, X) =  M (x )( - r ) (2) ехр(ггу +  іАх) F ( 2 - i A , 2 -  ir; 4; 1 -  ехр(-2х)) .
(25) 

The normalization constant M (x) in (25) can be obtained also as in [12]. By 
using Eqs. (20), (21) and (25) we finally find [16]

P M  =  1 -  exp[-X (x)] 0  +  ’ ( 2 6 )

where X (x)  is defined in (19).
The relativistic threshold resummation factors (19) and (26) have the fol

lowing important properties. In the nonrelativistic limit, D < 1 ,  they repro
duce the known nonrelativistic result. In the ultrarelativistic limit, as it has 
been argued in [27, 28], the bound state spectrum vanishes as a mass m  —> 0 
because the particle mass is the only dimensional parameter. This feature 
reflects an essential difference between potential models and quantum field 
theory, where an additional dimensional parameter appears. One can con
clude that within a potential model, the S- and P-factors which correspond 
to the continuous spectrum should go to unity in the limit m —> 0. Thus, in 
contrast to the nonrelativistic case, the relativistic resummation factors, the 
S-factor (19) and P-factor (26), reproduce both the known nonrelativistic 
and the expected ultrarelativistic limits.

The relativistic L-factor for higher £ states is connected with QP partial 
wave function y?/(r, x) by the relation

L(y} = lim Г(2^ +  2) fA*V ^ ( r ’ (27’) 
(2sinhx)< r 2 (£ + l)  [ r J ’ ( 2 7 )

where the function ^ ( r ,  x) that one can obtain solving the equation (18), 
gives by means of the expression

у) =  Ne ( x ) ( - r Ye+^  exp[irx +  iA x + in(£ +  1)] x
(28) 

x F  (£ + 1 — iA ,£ + 1 — ir -,2£ + 2-,l — exp(—2x)) .
The normalization constant Ne(x) in (28) can be obtained (also as in [12]) 
from the condition

lim W r.x ) =  rp^(coshx,r) — > a—>0
sin(rx — TT̂ /2) 

sinhx
at r  —> oo.
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By using Eqs. (20), (27) and (28) we finally find

ад = ГТ ^ а д П [ 1 + ( ^ ) р  = 0.*.... W

3 Summing up of the threshold singularities

In comparing theoretical results with experimental data it is important to 
use the “simplest” objects which allow one to check direct consequences of 
the theory without using model assumptions.O Some single-argument func
tions which have a straightforward connection with experimentally measured 
quantities can play the role of these objects. The corresponding functions 
can be defined with the Euclidean and the Minkowskian arguments [29].

The 7?(s)-function discussed above, which is determined by the imaginary 
part of the correlator of the vector or axial-vector quark current, Ry/A (s), 
plays the role of such kind object. Corresponding perturbative expressions 
can be written as (see [30, 31])

= Tv / A &) [1 +  gV /A {v^ , (30)

where

_  . . 3 — r
Tv(v) =  v —y -

TA (v) =  v3 ,

4%
9v{v) = 

О

’ 7Г

2v ~

9A (V) = Y 0 '  7Г

_ 2 v  “
22 7

" V + 2V

(31)

(32)

The functions gv(v) [10] and gA (y) [32] approximate the corresponding exact 
two loop expressions.

The perturbative representation (30) is not applicable in the threshold 
area because it does not contain the resummation of the threshold singular
ities. The expressions including the resummation factors have the form

R - v M  =  ^ A (s) +  ^ ( s )  =  T ^ A (s) [1 +  5V M (s )] , (33)
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where

1 $ \ S ) = Tv (v) S M , < 0 )(*) = TA W  P M ,  
R ^ / A (S ) = TV / A ^  [ ^ v M ( v ) - ; U ( x )  .

7Г

(34)

(35)

The function 7?.^(s) in (33) is the product of the factor T(v) and the 
threshold resummation factor for corresponding state. It describes the princi
ple ” potential” contribution. The next term (s) in (33) relates to a QCD 
correction. In the limit m —> 0 the resummation factors S, P  —> 1, the vector 
and axial-vector corrections become asymptotically equal, 6V/A {S ) « s /тг, 
and the expression (34) reproduces the known massless formula.

Figure 1: The relative corrections 6V/A vs. v.

The relative correction in (33)is described by 6V/A (s). Its behavior we 
show in Fig. 1. The curves were obtained for as = 0.35 that corresponds to 
the value of the strong coupling extracted from the т-decay data (see [33]). 
Fig. 1 demonstrates that the correction to the principle potential contribution 
is small for a wide energy-interval: |5(s)| < 15%.

4 C onclusions
To summarize the threshold singularities and find corresponding resumma
tion factors we have used the quasipotential approach in quantum field the
ory. These relativistic resummation factors appear in the function R^s),
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which is proportional to the imaginary part of the quark current correlator, 
and could have a significant impact in interpreting strong-interaction physics. 
Indeed, in many physically interesting cases, the function R(s) appears as a 
factor in an integrand, as, for example, for the case of inclusive r  decay, for 
smearing quantities, and for the Adler D-function.

The relativistic threshold resummation factors obtained here reproduce 
both the known nonrelativistic and expected ultrarelativistic limits and cor
respond to the QCD-like Coulomb potential.

We have suggested new expressions for R(s) in which threshold singulari
ties are summarized by a potential contribution. We have demonstrated that 
the QCD correction to the principle potential contribution is rather small for 
a wide interval of energies.
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