Interactions of $\eta, \eta^{\prime}-$ Mesons with Heavy Quarks

E.Z.Avakyan*, S.L.Avakyan
Gomel State Technical University

Abstract

The $\eta, \eta^{\prime}, \eta_{c}$ system was investigated in the $q \bar{q}-s \bar{s}-c \bar{c}$ basis. Numerical values for mixing angles φ, θ_{c} and θ_{y} were fixed by the experimental data of two photon η-decays. The decay constants of radiative $V \rightarrow P \gamma$ and $P \rightarrow V \gamma\left(P \equiv \eta, \eta^{\prime} ; V \equiv \rho, \omega, \phi\right)$ decays were calculated and turned out to be in agreement with experimental data.

1 Introduction.

The investigation of simple quark-antiquark systems such as pseudoscalar mesons $\pi^{0}, \eta, \eta^{\prime} \ldots$ is of extraordinary interest as a source of information about structure of hadrons. CLEO [1] and L3[2]experiments call the additional interest to this phenomena. It's well known that $\mathrm{SU}(3)$-symmetry predicts the existence of massless pseudoscalar octet $\eta_{8}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-s \bar{s})$ and massive singlet $\eta_{0}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})$. Physical states η, η^{\prime} are the mixture of η_{8} and η_{0}. The study of $\eta-\eta^{\prime}$ mixing is very important for understanding of basic properties of quark - hadron matter. This phenomena was considered in different approaches [3]. Also there exists approach connected with quark basis $q \bar{q}=\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}, s \bar{s}[4]$. In this case decay constant mixing is considered to be the same as for meson states. There are several ways to define $\eta-\eta^{\prime}$ mixing parameters:

- The radiative decays of η-mesons [4].
- The radiative J / Ψ - decays [5]

[^0]- Rations of weak decays constants [3].

Very recently Kloe Collaboration has reported new measurement of the ratio $R=\operatorname{Br}\left(\phi \rightarrow \eta^{\prime} \gamma\right) / \operatorname{Br}(\phi \rightarrow \eta \gamma)$ [6]. So the subject of admixture of heavy quark or gluonic components in light pseudoscalar mesons has regained interest. Early investigations of this subject already date back to the 70 -th, when Kramer [7]and independently Fritzch and Jackson [8]discussed mixing of light and heavy pseudoscalar mesons in the context of radiative J / Ψ - decays. The rather exostive phenomenological analysis of mixing parameters of $\eta-\eta^{\prime}-\eta_{c}$ system have been performed by Chao [5]. There is number of approaches where authors trie to explain existing experimental data by admixture of gluonic states (the recent one is [9]).

In this article we study the mixing in the the $\eta-\eta^{\prime}-\eta_{c}$ system. The analysis of mixing parameters can be performed by study two-photon decays of $\eta, \eta^{\prime} \eta_{c}$ and mesons.

There is a problem in is the evaluation of the hadronic matrix elements.In our previous work [10] we perform the calculations in the Quark Confinement Model (QCM) [11]. But the heavy quarks interactions cannot be described in the the framework of this model.So in the present work we use Relativistic Constituent Quark Model (RCQM)[12].

2 The description of η mixing

In order to quantify the mixing in the η, η^{\prime} system, one have to define appropriate mixing parameters, which can be related to physical observables.

The octet-singlet mixing is based on chiral perturbation theory which traditionally leads to description of η, η^{\prime} mixing in terms of singlet-octet parameters [3]. In this case the physical states η and η^{\prime} are the mixture of massive singlet $\eta_{0}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})$ and massless octet $\eta_{8}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-s \bar{s})$:

$$
\begin{equation*}
\binom{\eta}{\eta^{\prime}}=\binom{\cos \theta-\sin \theta}{\sin \theta \cos \theta}\binom{\eta_{8}}{\eta_{0}} \tag{1}
\end{equation*}
$$

Mixing in the quark basis(QBM). The parametrization of the decay constants look simpler in another basis, where the two independent axial-vector currents are taken as [4]

$$
\begin{array}{r}
J_{\mu 5}^{q}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d\right) \\
J_{\mu 5}^{s}=\bar{s} \gamma_{\mu} \gamma_{5} s \tag{2}
\end{array}
$$

In this scheme η, η^{\prime} mixing is defined as

$$
\begin{equation*}
\binom{\eta}{\eta^{\prime}}=\binom{\cos \varphi-\sin \varphi}{\sin \varphi \cos \varphi}\binom{\eta_{q}}{\eta_{s}} \tag{3}
\end{equation*}
$$

where $\eta_{q}=\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}, \eta_{s}=s \bar{s}$.
The numerical value for mixing angle φ varies as $\varphi=30^{\circ} \div 45^{\circ}$ in different approaches [3].

This scheme can be generalized to the $q \bar{q}-s \bar{s}-c \bar{c}$ basis. One can assume behavior for decay constants of $\eta-\eta^{\prime}-\eta_{c}$ to be the similar that one in $q \bar{q}-s \bar{s}$ basis. Then we can write:

$$
\left(\begin{array}{ccc}
f_{\eta}^{q} & f_{\eta}^{s} & f_{\eta}^{c} \tag{4}\\
f_{\eta^{\prime}}^{q} & f_{\eta^{\prime}}^{s} & f_{\eta^{\prime}}^{c} \\
f_{\eta_{c}}^{q} & f_{\eta_{c}}^{s} & f_{\eta_{c}}^{c}
\end{array}\right)=U\left(\varphi, \theta_{y}, \theta_{c}\right) \operatorname{diag}\left(f_{q}, f_{s}, f_{c}\right)
$$

where $\eta_{c}=c \bar{c}$. The transformation matrix now involves three angles:

$$
U\left(\varphi, \theta_{y}, \theta_{c}\right)=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & -\theta_{c} \sin \theta_{y} \tag{5}\\
\sin \varphi & \cos \varphi & \theta_{c} \cos \theta_{y} \\
-\theta_{c} \sin \left(\varphi-\theta_{y}\right) & -\theta_{c} \cos \left(\varphi-\theta_{y}\right) & 1
\end{array}\right)
$$

There terms of order θ_{c}^{2} were neglected, since the mixing between $\eta-\eta^{\prime}$ and η_{c} is an effect of the order of $\frac{1}{M_{\eta_{c}}^{2}}$. So we have

$$
U U^{\dagger}=1+O\left(\theta_{c}^{2}\right)
$$

The two new mixing angles are related with decay constants of $c \bar{c}$

$$
f_{\eta}^{c}=-f_{\eta_{c}} \theta_{c} \sin \theta_{y} ; \quad f_{\eta^{\prime}}^{c}=f_{\eta_{c}} \theta_{c} \cos \theta_{y}
$$

3 Two-photon decays and η, η^{\prime} mixing parameters.

The constant of two-photon decay $P \rightarrow \gamma \gamma$ is a very important source of information about η, η^{\prime} mixing. We can use the experimental data about η, η^{\prime} decays to fix numerical values of mixing angles φ, θ_{c} and θ_{y}.

Analytical expressions for radiative η, η^{\prime} decay constants in the case of $q \bar{q}-s \bar{s}$ was obtained in QCM [11]both in OSM and QBM in our previous work [10].

In the QBM approach the decay constants were received [10]as

$$
\begin{align*}
g_{\eta \gamma \gamma}(\varphi)=\frac{\sqrt{3 h_{\eta}(\varphi)}}{\pi}\left(\frac{1}{\sqrt{2}}\right. & \frac{5}{9} \cdot F_{P V V}\left(m_{\eta}^{2}, 0,0, \Lambda_{n}\right) \cdot \cos \varphi- \\
& \left.-\frac{1}{9} \cdot F_{P V V}\left(m_{\eta}^{2}, 0,0, \Lambda_{s}\right) \cdot \sin \varphi\right) \tag{6}
\end{align*}
$$

$$
\begin{align*}
g_{\eta^{\prime} \gamma \gamma}(\varphi)=\frac{\sqrt{3 h_{\eta^{\prime}}(\varphi)}}{\pi}\left(\frac{1}{\sqrt{2}} \cdot\right. & \frac{5}{9} \cdot F_{P V V}\left(m_{\eta^{\prime}}^{2}, 0,0, \Lambda_{n}\right) \cdot \sin \varphi+ \\
& \left.+\frac{1}{9} \cdot F_{P V V}\left(m_{\eta^{\prime}}^{2}, 0,0, \Lambda_{s}\right) \cdot \cos \varphi\right) \tag{7}
\end{align*}
$$

The structure integral $F_{P V V}\left(m^{2}, 0,0, \Lambda\right)$ in (6),(7) arise from triangle diagram with $i \gamma_{5}, \gamma^{\mu}, \gamma^{\nu}$ vertexes.

In the case of $q \bar{q}-s \bar{s}-c \bar{c}$ basis $g_{\eta \gamma \gamma}, g_{\eta^{\prime} \gamma \gamma}$ and $g_{\eta_{c} \gamma \gamma}$ are written as:

$$
\begin{gather*}
g_{\eta \gamma \gamma}=\frac{\sqrt{3 h_{\eta}\left(\varphi, \theta_{c}, \theta_{y}\right)}}{\pi}\left(\frac{1}{\sqrt{2}} \frac{5}{9} g_{P_{q \bar{q} \rightarrow \gamma \gamma}}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \cos \varphi-\right. \\
\left.-\frac{1}{9} g_{P_{s \bar{s}} \rightarrow \gamma \gamma}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \sin \varphi-\frac{5}{9} \theta_{c} \sin \theta_{y} g_{P_{c \bar{c}} \rightarrow \gamma \gamma}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right)\right) \tag{8}
\end{gather*}
$$

$$
g_{\eta^{\prime} \gamma \gamma}=\frac{\sqrt{3 h_{\eta^{\prime}}\left(\varphi, \theta_{c}, \theta_{y}\right)}}{\pi}\left(\frac{1}{\sqrt{2}} \frac{5}{9} g_{P_{q \bar{q} \rightarrow \gamma \gamma}}\left(m_{\eta^{\prime}}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \sin \varphi+\right.
$$

$$
\begin{equation*}
\left.+\frac{1}{9} g_{P_{s} \rightarrow \gamma \gamma}\left(m_{\eta^{\prime}}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \cos \varphi+\frac{5}{9} \theta_{c} \cos \theta_{y} g_{P_{c \bar{c} \rightarrow \gamma \gamma}}\left(m_{\eta^{\prime}}^{2}, \varphi, \theta_{c}, \theta_{y}\right)\right) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
g_{\eta_{c} \gamma \gamma} & =\frac{\sqrt{3 h_{\eta_{c}}\left(\varphi, \theta_{c}, \theta_{y}\right)}}{\pi}\left(-\frac{1}{\sqrt{2}} \frac{5}{9} g_{P_{q \bar{q} \rightarrow \gamma \gamma}}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \theta_{c} \sin \left(\varphi-\theta_{y}\right)+\right. \\
& \left.+\frac{1}{9} g_{P_{s \bar{s}} \rightarrow \gamma \gamma}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right) \theta_{c} \cos \left(\varphi-\theta_{y}\right)+\frac{5}{9} g_{P_{c \bar{c}} \rightarrow \gamma \gamma}\left(m_{\eta}^{2}, \varphi, \theta_{c}, \theta_{y}\right)\right) \tag{10}
\end{align*}
$$

The $g_{P_{q \bar{q}}}, g_{P_{s \bar{z}}}, g_{P_{c \bar{c}}}$ are the constants of two photon decays of P-states with the corresponding quark contents. The QCM failed in description of heavy quarks, so in the present work we use the Relativistic Constituent Quark Model (RCQM)[12] for description of the hadronic interactions of η mesons.

4 Relativistic Constituent Quark Model

The hadronic interactions will be described in the Relativistic Constituent Quark Model (RCQM)[12].This model is based on the effective interaction Lagrangian which describes the coupling of hadrons with their constituent quarks:

$$
\begin{equation*}
L_{i n t}(x)=g_{H} H(x) \int d x_{1} \int d x_{2} \Phi_{H}\left(x, x_{1}, x_{2}\right) \bar{q}\left(x_{1}\right) \Gamma_{H} \lambda_{H} q\left(x_{2}\right) \tag{11}
\end{equation*}
$$

Here λ_{H} and Γ_{H} are Gell-Mann and Dirac matrices,respectively, which entail the flavor and spin quantum numbers of the hadron H. The function Φ_{H} is related to the scalar part of Bete-Salpeter amplitude and characterizes the finite size of hadron. In order to provide Lorence invariance of Lagrangian (11) Φ_{H} have to be invariant under transition $\Phi_{H}\left(x+a, x_{1}+a, x_{2}+a\right)=$ $\Phi_{H}\left(x, x_{1}, x_{2}\right)$.

In the case of an arbitrary pair of quarks with different masses Φ_{H} is given by

$$
\begin{equation*}
\Phi_{H}\left(x, x_{1}, x_{2}\right)=\delta\left(x-\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}\right) f\left(\left(x_{1}-x_{2}\right)^{2}\right) \tag{12}
\end{equation*}
$$

The choice of vertex function $f\left(\left(x_{1}-x_{2}\right)^{2}\right)$ will be specified after transition to momentum space.

Let us consider meson mass function, defined by the diagram in Fig.1.

Fig. 1

$$
\begin{array}{r}
\Pi_{H}(x-y)=\int d x_{1} \int d x_{2} \Phi_{H}\left(x, x_{1}, x_{2}\right) \int d y_{1} \int d y_{2} \Phi_{H}\left(y, y_{1}, y_{2}\right) \\
\cdot \operatorname{Tr}\left\{S\left(y_{1}-x_{1}\right) \Gamma_{H} S\left(x_{2}-y_{1}\right) \Gamma_{H}\right\} \tag{13}
\end{array}
$$

The Fourier-transform of meson mass-function (13) is

$$
\begin{aligned}
& \tilde{\Pi}_{H}(p)=\int e^{-i p x} \Pi_{H}(x) d x= \\
& =\int \frac{d q}{(2 \pi)^{4}} \int \frac{d k_{1}}{(2 \pi)^{4}} \int \frac{d k_{2}}{(2 \pi)^{4}} \tilde{\Phi}_{H}\left(-p, k_{1}, k_{2}\right) \tilde{\Phi}_{H}\left(q,-k_{1}, k_{2}\right) \operatorname{Tr}\left\{S\left(\hat{k}_{1}\right) \Gamma_{H} S\left(\hat{k}_{2}\right) \Gamma_{H}\right\}
\end{aligned}
$$

and finally can be written as

$$
\begin{equation*}
\tilde{\Pi}_{H}(p)=\int \frac{d k}{(2 \pi)^{4}} \phi_{H}^{2}(k, p) \operatorname{Tr}\left\{S(\hat{k}+\hat{p}) \Gamma_{H} S(\hat{k}) \Gamma_{H}\right\} \tag{14}
\end{equation*}
$$

We assume that the vertex function ϕ_{H} depends only on the loop momentum k. The function ϕ_{H} is assumed to be the analytical function which decreases sufficiently fast in the Euclidean momentum space. In this work we employ a Gaussian form for the vertex function $\phi_{H}(k)=\exp \left(-k^{2} / \Lambda_{H}^{2}\right)$.The size parameters Λ_{H} were determined by fit to experimental data or lattice simulations [13]. We use local quark propagators

$$
\begin{equation*}
S_{i}(\hat{k})=\frac{1}{m_{i}-\hat{k}} \tag{15}
\end{equation*}
$$

where m_{i} is the constituent quark mass. As it discussed in [12], we assume that $m_{H}<m_{q_{1}}+m_{q_{2}}$ in order to avoid the appearance the of imaginary parts in the physical amplitudes. The fit values for the constituent quark masses are taken from [13] and are given as

m_{u}	m_{s}	m_{c}
$0.235(\mathrm{GeV})$	$0.333(\mathrm{GeV})$	$1.67(\mathrm{Gev})$

The coupling constants g_{H} are determined by the co called compositeness condition [14] and had been used in QCM [11]. It means that the renormalization constant of the meson field is equal to zero

$$
\begin{equation*}
Z_{M}=1-\frac{3 g_{H}^{2}}{4 \pi^{2}} \tilde{\Pi}_{H}^{\prime}\left(m_{H}^{2}\right)=0 \tag{16}
\end{equation*}
$$

where $\tilde{\Pi_{H}^{\prime}}(p)$ is the derivative of the mass function (14). It is convenient to use interaction constant in a form:

$$
\begin{equation*}
h_{H}=\frac{3 g_{H}^{2}}{4 \pi^{2}}=\frac{1}{\tilde{\Pi}_{H}^{\prime}\left(m_{H}^{2}\right)} \tag{17}
\end{equation*}
$$

instead of g_{H} in the further calculations.

5 Mixing parameters of $\eta, \eta^{\prime}, \eta_{c}$ - mesons in $q \bar{q}-s \bar{s}-c \bar{c}$ basis.

As it was mentioned above, one has the opportunity to fix the $\eta, \eta^{\prime}, \eta_{c}$ mixing angles by using the experimental data about the two photon decays of this mesons.

The experimental values of widths of this decays are

$$
\begin{array}{r}
W(\eta \rightarrow \gamma \gamma)=(0.46 \pm 0.04) \mathrm{KeV}[15] \\
W\left(\eta^{\prime} \rightarrow \gamma \gamma\right)=(4.27 \pm 0.19) \mathrm{KeV}[15] \\
W\left(\eta_{c} \rightarrow \gamma \gamma\right)=(26.97 \pm 2.97) \mathrm{KeV}[16] \tag{18}
\end{array}
$$

The matrix element of $\eta, \eta^{\prime}, \eta_{c} \rightarrow \gamma \gamma$ is defined by the diagram in Fig. 2 and can be written as

$$
\begin{equation*}
A(P \rightarrow \gamma \gamma)=e^{2} g_{P \gamma \gamma} \varepsilon^{\mu \nu \alpha \beta} \epsilon^{\mu}\left(q_{1}\right) \epsilon^{\nu}\left(q_{2}\right) \tag{19}
\end{equation*}
$$

$g_{P \gamma \gamma}$ are just the decay constants from (8)-(10).

Fig. 2
In RCQM $g_{P_{q \bar{q}},}, g_{P_{s} s}, g_{P_{c \bar{\varepsilon}}}$ from (8)-(10) are defined by loop integral

$$
\begin{equation*}
g_{P_{q \bar{q}} \rightarrow \gamma \gamma}=\int \frac{d^{4} k}{4 \pi^{2} i} \phi_{P}\left(-\frac{k^{2}}{\Lambda_{P}^{2}}\right) \operatorname{Tr}\left[\gamma^{5} S_{q}\left(\hat{k}-\hat{q_{2}}\right) \gamma^{\mu} S_{q}(\hat{k}) \gamma^{\nu} S_{q}\left(\hat{k}+\hat{q_{1}}\right)\right] \tag{20}
\end{equation*}
$$

Using integration technique in detailed described in [16],one then arrives at the following analytical representation of $g_{P_{q_{i} \overline{q_{i}}}}\left(q_{i}=q, s, c\right)$

$$
\begin{equation*}
g_{P_{q_{i} \bar{q}_{i}} \rightarrow \gamma \gamma}=m_{q_{i}} \int_{0}^{\infty} d t\left(\frac{t}{t+1}\right)^{2} \int_{0}^{1} d^{3} \alpha \delta\left(1-\sum_{i=1}^{3} \alpha_{i}\right)\left(-\phi_{P}^{\prime}\left(z_{0}\right)\right) \tag{21}
\end{equation*}
$$

where

$$
z_{0}=t\left(m_{q_{i}}^{2}-\alpha_{1} \alpha_{2} p^{2}\right)-\frac{t}{1+t} \alpha_{1} \alpha_{2} p^{2}
$$

The coupling constants $h_{\eta}, h_{\eta^{\prime}}, h_{\eta_{c}}$ are defined by (17), with $\Pi_{\eta, \eta^{\prime}}$

$$
\begin{array}{r}
\Pi_{\eta}\left(m_{\eta}^{2}\right)=\Pi\left(m_{\eta}^{2}, m_{q}\right) \cos ^{2} \varphi+\Pi\left(m_{\eta}^{2}, m_{s}\right) \sin ^{2} \varphi+\Pi\left(m_{\eta}^{2}, m_{c}\right) \theta_{c}^{2} \sin ^{2} \theta_{y} \\
\Pi_{\eta^{\prime}}\left(m_{\eta^{\prime}}^{2}\right)=\Pi\left(m_{\eta^{\prime}}^{2}, m_{q}\right) \sin ^{2} \varphi+\Pi\left(m_{\eta^{\prime}}^{2}, m_{s}\right) \cos ^{2} \varphi+\Pi\left(m_{\eta^{\prime}}^{2}, m_{c}\right) \theta_{c}^{2} \cos ^{2} \theta_{y} \\
\Pi_{\eta_{c}}\left(m_{\eta_{c}}^{2}\right)=\Pi\left(m_{\eta_{c}}^{2}, m_{q}\right)\left(\theta_{c} \sin \left(\varphi-\theta_{y}\right)\right)^{2}+\Pi\left(m_{\eta_{c}}^{2}, m_{s}\right)\left(\theta_{c} \cos \left(\varphi-\theta_{y}\right)\right)^{2} \\
+\Pi\left(m_{\eta}^{2}, m_{c}\right) \tag{24}
\end{array}
$$

Mass functions $\Pi\left(p^{2}, m_{q}\right)$ in the case of pseudoscalars can be written according to (14)

$$
\begin{equation*}
\Pi\left(p^{2}, m_{q}\right)=\int \frac{d k}{(2 \pi)^{4}} \phi_{P}^{2}\left(-\frac{k^{2}}{\Lambda_{P}^{2}}\right) \operatorname{Tr}\left\{S_{q}(\hat{k}+\hat{p}) i \gamma^{5} S_{q}(\hat{k}) i \gamma^{5}\right\} \tag{25}
\end{equation*}
$$

The derivative of mass function $\Pi\left(p^{2}, m_{q}\right)$ can be received as

$$
\begin{equation*}
\left.\frac{d}{d p^{2}} \Pi\left(p^{2}, m_{q}\right)\right|_{p^{2}=m_{H}^{2}}=\frac{1}{2} \int_{0}^{\infty} d t\left(\frac{t}{t+1}\right)^{2} \int_{0}^{1} d \alpha F(\alpha, t) \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& F(\alpha, t)=\phi_{H}^{2}(z) \frac{1}{1+t}\left(4-3 \frac{\alpha t}{1+t}\right)- \\
& -\left(\phi_{H}^{2}(z)\right)^{\prime}\left\{2 m_{q}^{2}+\frac{\alpha t}{1+t}\left[m_{H}^{2}-m_{q}^{2}\right]-m_{H}^{2}\left(\frac{\alpha t}{1+t}\right)^{2}\left(2-\frac{\alpha t}{1+t}\right)\right\}
\end{aligned}
$$

with

$$
\begin{equation*}
z=t\left(m_{q}^{2}-\alpha(1-\alpha) m_{H}^{2}\right)-\frac{\alpha^{2} t}{1+t} m_{H}^{2} \tag{27}
\end{equation*}
$$

The decay width of two photon decay of pseudoscalar meson is written in standard form

$$
\begin{equation*}
W(P \rightarrow \gamma \gamma)=\frac{\pi}{4} m_{P}^{3} \alpha^{2} g_{P \gamma \gamma}^{2} \tag{28}
\end{equation*}
$$

To define mixing angles we have calculated $g_{P \rightarrow \gamma \gamma}$ for $\eta, \eta^{\prime}, \eta_{c}$ as described above and have used the experimental values for $g_{\eta, \eta^{\prime}, \eta_{c} \rightarrow \gamma \gamma}^{\exp }$ extracted from (18) by (28). So, the following numerical values were received

$$
\begin{equation*}
\varphi=33.1^{\circ} ; \theta_{c}=-1.1^{\circ} ; \theta_{y}=51.3^{\circ} \tag{29}
\end{equation*}
$$

Now using the above values for the mixing angles φ, θ_{y} and θ_{c} we can find for quark content of the physical mesons

$$
\begin{array}{r}
\left.\left.\left.\eta\rangle=0.72 \eta_{q}\right\rangle-0.65 \eta_{s}\right\rangle-0.005 \eta_{c}\right\rangle \\
\left.\left.\left.\left.\eta^{\prime}\right\rangle=0.65 \eta_{q}\right\rangle+0.72 \eta_{s}\right\rangle-0.016 \eta_{c}\right\rangle \\
\left.\left.\left.\left.\eta_{c}\right\rangle=0.012 \eta_{q}\right\rangle+0.009 \eta_{s}\right\rangle+0.005 \eta_{c}\right\rangle \tag{30}
\end{array}
$$

6 Radiative decays of η, η^{\prime} mesons.

Let us calculate the constants of $V \rightarrow P \gamma$ and $P \rightarrow V \gamma\left(P \equiv \eta, \eta^{\prime} ; V \equiv\right.$ $\rho, \omega, \phi)$ decays using the mixing parameters received in previous section.

The decay amplitudes are defined as

$$
\begin{align*}
& A(V \rightarrow P \gamma)=e g_{V P \gamma} \varepsilon^{\mu \nu \alpha \beta} \epsilon^{\mu}\left(p_{V}\right) \epsilon^{\nu}\left(q_{\gamma}\right) q_{\gamma}^{\alpha} p_{V}^{\beta} \tag{31}\\
& A(P \rightarrow V \gamma)=e g_{P V \gamma} \varepsilon^{\mu \nu \alpha \beta} \epsilon^{\mu}\left(q_{\gamma}\right) \epsilon^{\nu}\left(p_{V}\right) q_{\gamma}^{\alpha} p_{V}^{\beta} \tag{32}
\end{align*}
$$

and the corresponding decay widths are

$$
\begin{gather*}
W(P \rightarrow V \gamma)=m_{V}^{3} \alpha g_{P V \gamma}^{2} \tag{33}\\
W(V \rightarrow P \gamma)=\frac{1}{3} m_{p}^{3} \alpha g_{V P \gamma}^{2} \tag{34}
\end{gather*}
$$

The following expressions for decay constants were received :

$$
\begin{align*}
g_{\eta \rho \gamma} & =\sqrt{h_{\rho} h_{\eta}\left(\varphi, \theta_{c}, \theta_{y}\right)} \cos \varphi g_{P V \gamma}\left(m_{\eta}^{2}, m_{\rho}^{2}, 0, m q\right) \tag{35}\\
g_{\eta^{\prime} \rho \gamma} & =\sqrt{h_{\rho} h_{\eta^{\prime}}\left(\varphi, \theta_{c}, \theta_{y}\right)} \sin \varphi g_{P V \gamma}\left(m_{\eta^{\prime}}^{2}, m_{\rho}^{2}, 0, m q\right) \tag{36}\\
g_{\eta \omega \gamma} & =\sqrt{h_{\omega} h_{\eta}\left(\varphi, \theta_{c}, \theta_{y}\right)} \cos \varphi \frac{1}{3} g_{P V \gamma}\left(m_{\eta}^{2}, m_{\omega}^{2}, 0, m q\right) \tag{37}\\
g_{\eta^{\prime} \omega \gamma} & =\sqrt{h_{\omega} h_{\eta^{\prime}}\left(\varphi, \theta_{c}, \theta_{y}\right)} \sin \varphi \frac{1}{3} g_{P V \gamma}\left(m_{\eta^{\prime}}^{2}, m_{\omega}^{2}, 0, m_{q}\right) \tag{38}
\end{align*}
$$

$$
\begin{align*}
g_{\eta \phi \gamma} & =\sqrt{h_{\phi} h_{\eta}\left(\varphi, \theta_{c}, \theta_{y}\right)} \sin \varphi \frac{2}{3} g_{P V \gamma}\left(m_{\eta}^{2}, m_{\phi}^{2}, 0, m_{s}\right) \tag{39}\\
g_{\eta^{\prime} \phi \gamma} & =\sqrt{h_{\phi} h_{\eta^{\prime}}\left(\varphi, \theta_{c}, \theta_{y}\right)} \cos \varphi \frac{2}{3} g_{P V \gamma}\left(m_{\eta^{\prime}}^{2}, m_{\phi}^{2}, 0, m_{s}\right) \tag{40}
\end{align*}
$$

The analytical expression for function $g_{P V \gamma}\left(m_{P}^{2}, m_{V}^{2}, 0, m_{q}\right)$ in (35)- (40) can be received by evacuation of one loop integral as described in previous section. The numerical values for $V \rightarrow P \gamma$ and $P \rightarrow V \gamma$ decays are given in tables 1 and 2.

Table 1

$g_{V \eta \gamma}\left(\mathrm{GeV}^{-1}\right)$	Experiment [15]	$q \bar{q}-s \bar{s}-c \bar{c}$ basis with $\varphi=33.1^{\circ} ; \theta_{c}=-1.1^{\circ} ; \theta_{y}=51.3^{\circ}$
$g_{\rho \eta \gamma}$	$1.47+0.25-0.28$	1.51
$g_{\omega \eta \gamma}$	0.5 ± 0.04	0.51
$g_{\phi \eta \gamma}$	0.69 ± 0.02	0.72

Table 2

$g_{V \eta^{\prime} \gamma}\left(\mathrm{GeV}^{-1}\right)$	Experiment [15]	$q \bar{q}-s \bar{s}-c \bar{c}$ basis with $\varphi=33.1^{\circ} ; \theta_{c}=-1.1^{\circ} ; \theta_{y}=51.3^{\circ}$
$g_{\rho \eta^{\prime} \gamma}$	1.31 ± 0.06	1.24
$g_{\omega \eta^{\prime} \gamma}$	0.45 ± 0.03	0.37
$g_{\phi \eta^{\prime} \gamma}$	1.00 ± 0.28	0.79

One can see that numerical results are in agreement with experimental data.

References

[1] J. Gronberg et al.,CLEO Collaboration, Phys. Rev. D 57, 33 (1998)
[2] L3 collaboration, M. Acciarri et al., Phys. Lett. B 418, 399 (1998).
[3] T.Feldman, Int.J.Mod.Phys. A15,159 (2000)
[4] T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58, 114006 (1998); Phys. Lett. B449, 339 (1999).
[5] K.Chao, Nucl.Phys B317,597(1989)
[6] F.Amrrosino et al,KLOE Collaboration, arXiv:hep-ex/0612029
[7] A.Kazi,G.Kramer, D.H. Shiller, Nuovo Cim.Lett.,15,120(1976)
[8] H.Fritzch,J.D.Jacson,Phys.Lett.,66B,365.(1977)
[9] R.Escribano, J. Nadal,arXiv:hep-hep/0703187 v.2(2007)
[10] E.Avakyan, S.Avakyan,Actual Problemes of Microword Physics:Proceeging of the International School-Seminar, v.1,p.231242
[11] G. V. Efimov, M. A. Ivanov, Internat. J. Mod. Phys.A, 3, (1988) 1290.
[12] M.A.Ivanov, M.P. Locher, V.E. Lyubovitskij, Few-Bode Syst.,21,131,(1996)
[13] M.A.Ivanov et al,PR,D76,034018,(2007)
[14] T. Eguchi, Phys. Rev. D 14 (1976) 2755
[15] W.-M. Yao et al., (Particle Data Group) J. Phys. 2006. Vol. G 33, P. 1.
[16] M.A.Ivanov, J.G.Körner, P.Santorelly, arXiv:hep-hep/0007169 v. 2 (2000)

[^0]: *E-mail:avakyan@tut.by

