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Abstract
A relativistic inverse problem is solved for the case when the total 

quasipotential simulating the interaction of two relativistic spinless 
particles of unequal masses is the superposition of a local quasipoten­
tial and a sum of nonlocal separable quasipotentials. The problem is 
investigated within the relativistic quasipotential approach to quan­
tum field theory. The local component of total interaction is supposed 
to be known and it not admits bound states. It is shown that the non­
local separable components of total interaction may be reconstructed if 
its the local component, the phase-shift additions and the true bound 
state energy are known.

The inverse scattering problem has a long history. So, it was proven by 
Gelfand and Levitan [1], Marchenko [2], and Krein [3] that the inverse prob­
lem can be solved within nonrelativistic theory. The most complete survey 
of this theory was given in the monographs of Chadan and Sabatier [4] and 
Zakhariev and Suzko [5]. In the most of studies, however, the inverse prob­
lem is solved on the basis of the nonrelativistic Schrodinger equation [6-10]. 
Therefore, the problem of reconstructing interaction for essentially relativis­
tic systems -  in particular, within the relativistic quasipotential approach 
[11] -  is yet remained important.

In the present study, the problem of reconstructing the nonlocal separable 
components of the total quasipotential describing the interaction between
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two relativistic spinless particles of unequal masses (m̂  m2) is considered.
The problem is investigated within the relativistic quasipotential approach 
to quantum field theory [12]. It is assumed that the total interaction admits 
the existence of the only true bound state. Moreover, the local part W(r) 
of the total interaction is considered to be known and it not admits bound 
states. We will show that the nonlocal separable components V/n (r) of the 
total interaction can be reconstructed provided that the local part W (r), the 
additions of the phase shift and the energies of the bound states
are known. Our approach is based on the expression for the additions of the 
phase shift (h = c = 1)

ta n ^ '"^ ')  =  -^ sin h 1 + | P J d X

2 J coshy — coshy 
о

9 I |2 n  1 г 12
A M  = ~^m l^cothx)^"-1̂ ) / ^  П  [cos > (2) 

m=l

Eln = ±1, П = 1, 2, ..., Ml, 

where P means the principal value, Qi(z) is a Legender function of the sec­
ond kind,V^n - 1 \ y )  is the transform of the components Vin (r), and F™ (x) 
is the Jost function of the local quasipotential W(r) and is related to the 
corresponding phase shift 8™ (x) by the equation

F ^ M  = Ю * ) |  exp [ - < ( * ) ]  .

In order to reconstruct the separable component on the basis of 
the additions of the phase shift 8pn (x')t we will solve the integral Eq.(l) for 
the function Ain (x')- Here we will use the results that were obtained by the 
author in [13]. After that, by using of the Hilbert integral transformation, we 
find the function from (2). Finally, by performing the relativistic
Hankel transformations

OO
Ип(г) =  j  ' n  =  > (3)

1
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we reconstruct the components Vjn (r). Here, is the solution to
the finite-difference quasipotential equation for the superposition of a lo­
cal quasipotential W  (r) and a sum of nonlocal separable quasipotentials 
П—1
52 £ ітУіт(г)Уіт (т'). This the solution will'correspond the spectral density 

m=l

dp\n  (coshy) _  dp,°\coshy)
d(coshy) d(coshy) m=l

jcos 6^Іт (у)j , n =  1 , 2 , Mi, (4)

where

= ^ i n h - ‘(x) |й (со ‘Ь х ) //Г (х ) | 
a(coshy) 7Г 1 1

is the spectral density associated with the local quasipotential W(r). Besides, 
the solution 'ф(п~1\ г ,  у) will satisfy the completeness property

dp^ 1\c o sh y )^ n  г\ г ,  x ) ^  ~ r ) I n = 1 , 2 , Mi. (5)

Note that, at n =  1 the integral transformation (3) and the property (5) 
reduce to the corresponding expressions obtained in [14].

For the unique solution of the inverse scattering problem to exist, we 
assume that the additions of the phase shift ^ ln (x') in expression (1) is a 
function continuous in the sence of Holder with a positive index and that, 
for x! +oo, we have estimates

^ ,п ( / )  =  , z > о , 7 > 1 , n =  1,2,.... Ml. (6)

These requirements means that the components Ип (г ) of the separable in­
teraction satisfies the conditions

rVZn(r) € Li(0, oo) , n =  1,2,..., Mi. (7)

Besides, the Levinson theorem for the additions of the phase shift takes the 
form

^ ‘"(0) -  =  ^ ‘"(0) =  7г(<т̂ п) -  +  i /^ )  , n =  1,2,..., Mi , (8)
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where

0 ) - ^ Г ( о о )  =  ^ ( 0 )  =  0.

Here, is the number of true bound states corresponding to the total 
interaction and having energies that satisfy the conditions

0 < E ^  =  coshy^ < 1 , Xt^ = і к ^ ,  0 < < 7T/2 , n =  1 , 2 , Mi,
(9) 

it is known that

{0 , Ein  =  1 , n =  1,2,..., Mi ;
0 , ^„ =  - 1 ,  n = l , 2 , . . . , M - l  ; (10)
1 , îMt = — 1 , n = Mi .

At the same time is the number of spurious bound states associated with 
the component of Ип(Н whose energies satisfy the condition

=coshX ^  > 1 , n =  1 ,2 ,...,Mi , k = /  1 , 6 i n  11

J K  ^ -J K  --  ’ 7 7 7 1 7 I I O  і Л П '  C __  1
,  b l n  —  1.

(11)
Moreover, the energies (11) of spurious bound states can be determined from 
the values of x' at which the additions of the phase shift intersects the straight 
lines 8^‘n = irk (k is an integer) from above as x! increases; that is,

= лк , n =  1 ,2 ,...,Mi
/о ,  1, -  1 , sin  = l ,

, e /n  =  - i ,
(12)

whereas the energy (9) of the only true bound state is simple root of the 
equation

o o

ФіМ і( Е П  =  -1  +  i  I  

о
coshx -  E^M ,)

The integral equation (1) we recast into the form
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iM ,x )  =  1 +  -  7Г f
I  t — x  — iO n =  1 ,2 ,... ,  M i, (13)

where x  =  coshx\ t =  coshx and where we introduced the following notation
△^‘"(x) =  ^ ‘"(arcosh x) , gin(x) =  —(2/7r)(a:2 — l/ ^ t a n A ^ " ^ ) , (14)

Ajn(^) = - s i n  A f'"(x)ex p  zV'"(x)j ,
■ф ^ х }  =  A i n (arcosh x )g ^ {x )  [1 +  3(7r/2)#n (a;)(z2 -  1) 1/2] .As in the case of one component separable quasipotential (n  =  1) [13], we search the solution of equation (13) in the form

-фіп(х) =  Hin (x+ ) =  lim H ( n (z +  irf) , 1 <  x  <  oo , (15)rj—*4-0where the function
H l n (z) =  1 +  -7Г I nt.---------------- (16)

is an analytic function in the complex plane of the variable z with a cut from1 to +oo. Also, we have lim H i^ z )  =  1 |z|—oo (17)along any direction provided that the function ^in{x) is Holder continuous and that the integral in (16) converges. Moreover, by substituting the solu­tion in (15) into the expression for the discontinuity of the function H in ^z) across cut, that is
Ніп { х ^  -  Hin (x_) =  - 2i sin (rr) exp ^ Д гЦ п (2:)̂  фіп(х}, we arrive at the homogeneous Riemann-Hilbert equation for the function 

H l n (z): 13



Hi n (x+ ) exp |̂ 2?ДУ,п (ж)̂  — Hl n ( x ^  =  0 , 1 < x  < oo , n =  1,2,..., Mi. (18)

A particular solution satisfying Eq.(18) and the condition (17) is given 
by

H i^z) = exp [и/п (г)] , (19)

where

М * )  =  - - Л Ц ^ -  (20)
7Г J t — Z

1

From the above assumptions on the behaviour of the additions of the phase 
shift and from conditions (6) and (17), it follows that

lim win (z) = 0
|z |— oo

along all directions. Moreover, the function in (20) is defined everywhere on 
the cut, with the exception of may be the point z = 1, where its behaviour 
is given by

ivin(z) =  (1/тг)А^п (1) In |1 -  z\ + ^ in (z) , z -> 1. (21)

Here, the function £lin (z} is finite for z —> 1, while Az
v 'n (l) =  Jz

v ,n (0) =  
7r(crzn  ̂~  ^z"”^ +  according to the Levinson theorem (8). Therefore, the 
function H l n (z) has a zero of order +  at the point z — 1. For
this reason, according to the expressions (15) , (19) and (20), a particular 
solution has the form

= exp [azn(z) -  гДг
Ц п (:г)] , (22)

where

a / n ( z )  =  - i p

7Г J t — X
1

uin(x±) = ain (x) T гД;
у ,п (ж). (23)
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Note that, the function given by (22) is regular at x  =  1 (it has a zero of 
order at this point), is continuous in the sense Holder with
the same index as the additions of phase shift, and is bounded for x  —> +oo 
in accordance with a priori assumptions on its properties. Moreover, the 
function in (22) satisfies Eq.(13), since the residue theorem gives

lim - — Я-+00 2тгг rj—»+o
------------ =  resZ — X — IT] z — x — ІТ) z = x + irj |„_+0

where Г+  is a closed contour consisting of circle having a radius R  and 
a center at the point z =  0, a circle C~ having a radius r] and a center at 
the point z — 1, and the two banks of the cut from 1 to R, the direction 
of the contour along the upper bank being opposite to that along the lower 
bank. According to the asymptotic formula (17), the contribution of the 
integral along the circle Сд tends to unity as R  —► +oo, while, according 
to the estimate in (21), the integral along the circle C~ tends to zero as 
T} —► +0. Hence, it follows that function in (22) is a particular solution of 
the nonhomogeneous integral equation (13).

A general solution to the homogeneous equation 

J t — x — iO ’ 
1

(24)

has the form

Фіпо^ = Hin o{x+ ) -  lim Hin o (x + irj) , 1 < x < oo, 
77—» 4-0

where the function

OO

Hino(z) = -
7Г J t ~  Z 

1

is analytic in the complex plane of z with a cut from 1 t +oo and which 
satisfies the condition

lim H i^ z}  =  0 |z|—oo
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in all directions and also it satisfies the Riemann-Hilbert homogeneous equa­
tion (18). Therefore, a general solution to Eq.(24) will be sought in the form

ч л(")
Hin o(z) = exp [wJn(z)] 52 • (2$)

Substituting (25) into (18) and requiring that the function H[n o (z) be finite 
at z =  1 (it has a zero of order +  i ^ a t  this point), gives

Hence, we have

г i ' 4 (n)
^ino{x) =  exp [а г„(ж) -  iAf‘n (z)j 5 2  /х  П + ^ п )-

к=1 '
(26) 

It is obvious that, in just the same way as in the case of particular solution, 
integration along the contour +  leads to the conclusion that the function 
in (26) is a solution to Eq. (24) and possesses all the required properties. 
Therefore, a general solution to the integral equation (13) has a form

Minix'} = + ^no(^) =  exp
/ n)

[«м ф  -  гДг
Ц"(ж)]

k=l

4n)
( x - i ) fc * ■

(27)
Finally, by uskig the notation in (14) and rearranging the sum into a product, 
we can recast the solution in (27) into the form

4 n ( / )  =  — s in h / sin Spn ( / )  exp [a/ n (cosh/)] 
7Г

/ n ) -<5

k = l—6

a (n)
a k

co sh / — 1 ’
(28)

П 1+

7Г J  coshx — cosh / 
о

(29)
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N (n)

^in \  tin = 1 , n  =  1 , 2 , Mi,
< £ ln  =  -1  , n = 1,2 ,...,Mi -  1 , <5 =  I  A  ’ Z \  (30) 

V , bin 1.
, +  1 , £lMt =  -1  , n =  Ml ,

In order to determine the parameters |  a* 'J ,  we note that, by definition 
(2), the function A(n (x') is of fixed sign at all values of y', whereas the 
additions of the phase shift at the energies (11) of spurious bound state 
satisfies the conditions in (12). Hence, the function Ain {x') retains of fixed 
sign, provided that

4 П) = 1 “
f 0 ,l,...,p (

( n ) - l  , eJn =  l ,  n = l,2 ,... ,M i, 
1,2,..., v ^ ,  Ein  =  - 1  , n =  1,2,..., Mi,

= 1 ~ coshy^'5, =  1 , £iMl =  -1  , n =  Mi. 
4-1

Thus, the coefficients { a ^ j a r e  completely determined by the energy (9) of 

true bound state of the total interaction (n =  Mi) and the additions of the 
phase shift, since the value y ^  are also determined by its behaviour -  that 
is, the conditions in (12). Instead of (28), we will then have

Ain(x') = - -sinhy ' sin ̂ ,n (х') exp [aIn (coshy')] x 
7Г

V /  r sinh2 (y'/2) -  sinh2 ( y ^ /2) sinh2 (y'/2) +  sin2 ( ^ n )/2)
X sinh2 (y'/2) sinh2 (y'/2)

(31)

n = 1,2,..., Mi, 
where and cr^are defined in (9) and (10), and 6 is defined in (30). 
Moreover, it follows from expressions (29) and (31) that the functions A/n (y')
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are continuous in the sence of Holder and that, for /  ~* +oo, them behaves 
as

cosh / | / |  7 , 7 > 1 , n =  1,2, ■■■jMi,
provided that the additions of the phase shift satisfies the conditions in (6). 
This in his turn implies that the components Vin (r) satisfies conditions in 
(7).

In order to reconstruct the components ИП(И by means of the transfor­
mation in (3), we introduce the functions 

Hn (sinh(//2)) =
sinh(//2 ) +  isin(/tjn )/2) 
s inh (//2 ) — fsin («^ /2 ) (32)

Q; (co th /) cos ( / ) ]  
m=l

1 2
V>£-) (sinh(X

, /2 ))/ Ю / ) |

where

| ^ - ) (sinh(//2))I =  , R e ^ ) (sinh(//2)) =  R e l ^ V )  ,

a r g ^ - ) ( - s m h ( /  /  2)) =  - a r g ^ - ) (sinh(//2)) , n = 1,2,...,M {.
(33)

Taking into account the conditions in (33), the relation argV^" 1\ —/ )  =  
argV^"- 1 ^ / )  implies that

arg^n" П ( / )  =  s gn /  • argV^ ) (sinh(//2)). (34)

The function / n (sinh(//2)) are then analytic in the band 0 < Imy' < тг/2 
are continuous for 0 < I m /  < тг/2, and for them has the place estimate

VZn(sinh(//2)) =  О [sinh2 ( / /2 ) ]  , | / |  oo , 0 < I m /  < тг/2 , (35)

if only the conditions in (6) hold. Moreover, the functions Vjn (sinh(//2)) 
does not vanish anywhere in the band 0 < I m /  < тг/2. Therefore, the 
functions In V b(sinh(//2)) are analytic in the band 0 < I m /  < тг/2 and, 
according to the estimate in (35), behaves as ln(sinh2 ( / /2 ) )  when | / |  —> oo.
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Therefore, the Hilbert integral transformation can be applied to both the real 
and the imaginary part of the function In V)n (sinh(x72)). For real values of 
x', we then obtain

00 л
Im l„ ^ ( / / 2 ) )  =  - I p  /  =

— oo
=  2sinh(x72)p  7  c o sh (x /2 )ln j7 ^

7Г J  coshx — coshx' ’
о

where we have considered that

ReinV/n (sinh(x/2)) =  In[тгеіпЛ/п (х)/2] .
From here, taking into account the expressions (32) -  (34), we finally obtain

| Q / ( c o t h x ' ) / F ;
l v ( x ' ) |  П  c o s  р Г ' т ( х ' ) ]  ^ іп  

m = l
(36)

, in ) sin(K^/2)
x exp -isgny <7/ 'arctan . , . , +  

smh(x/2)L
sinh(x72)p  f  cosh(x/2) In [7reinA n (x)/2]

7Г J  coshx— coshx' 
о

n = 1,2,..., Mh

Thus, we have shown that, a solution of the relativistic inverse scattering 
problem exists and is completely determined by the additions of the phase 
shift and by the energy of true bound state of the total interaction.

In conclusion, we note that method proposed here for reconstructing the 
nonlocal separable components of the total interaction between two relativis­
tic spinless particles of unequal masses is in fact equivalent to the one-body 
relativistic inverse scattering problem. This is due to the possibility of rep­
resenting, within the relativistic quasipotential approach to quantum field 
theory, the total c.m. energy of two relativistic spinless particles of unequal 
masses as an expression proportional to the energy of an effective relativistic 
particle of mass m' [15].
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