ВКЛАДЫ КВАРКОВ В СПИН НУКЛОНА В ПОЛУИНКЛЮЗИВНОМ ГЛУБОКОНЕУПРУГОМ РАССЕЯНИИ ЛЕПТОНОВ НА ДЕЙТРОНАХ

С.И. Тимошин, Е.А. Дегтярёва ГГТУ имени П.О.Сухого

Аннотация

Рассматривается возможность определения вкладов кварковых ароматов с помощью асимметрий полуинклюзивного глубоконеупругого лептон-нуклонного рассеяния. Представлены численные результаты измеряемых асимметрий.

Введение

Исследование спиновой структуры нуклона [1,2] является одной из задач физики частиц. Полуинклюзивные процессы – это источник новых данных о спиновой структуре нуклона [3]. С помощью данных, которые могут быть получены в экспериментах такого типа, можно получить дополнительную информацию для кварковых ароматов.

1.Наблюдаемые асимметрии.

Рассмотрим процесс полуинклюзивного ГНР поляризованных лептонов на поляризованных нуклонах с заряженным слабым током

$$\ell + p \to v + h + X. \tag{1}$$

Дифференциальное сечение процесса (1) для рассеяния лептона получено в лидирующем порядке КХД в виде:

$$\left(\frac{d^{3}\sigma_{t^{-}}}{dxdydz}\right)^{h} = 2\rho x \left\{ \sum_{q_{i},q_{j}} q_{i}(x,Q^{2}) D_{q_{j}}^{h}(z,Q^{2}) + y_{1}^{2} \sum_{\bar{q}_{j},\bar{q}_{i}} \bar{q}_{j}(x,Q^{2}) D_{\bar{q}_{i}}^{h}(z,Q^{2}) + P_{N}\left(\sum_{q_{i},q_{j}} \Delta q_{i}(x,Q^{2}) D_{q_{j}}^{h}(z,Q^{2}) - y_{1}^{2} \sum_{\bar{q}_{j},\bar{q}_{i}} \Delta \bar{q}_{j}(x,Q^{2}) D_{\bar{q}_{i}}^{h}(z,Q^{2}) \right\},$$

$$(2)$$

где $q_i = d, s, b, q_j = u, c, t, \overline{q}_i = \overline{d}, \overline{s}, \overline{b}, \overline{q}_j = \overline{u}, \overline{c}, \overline{t}$.

Для случая рассеяния антилептона дифференциальное сечение имеет вид:

$$\left(\frac{d^{3}\sigma_{t^{*}}}{dxdydz}\right)^{h} = 2\rho x \left\{ y_{i}^{2} \sum_{q_{i},q_{j}} q_{i}(x,Q^{2}) D_{q_{j}}^{h}(z,Q^{2}) + \sum_{\bar{q}_{j},\bar{q}_{i}} \overline{q}_{j}(x,Q^{2}) D_{\bar{q}_{i}}^{h}(z,Q^{2}) + P_{N}\left(\sum_{q_{i},q_{j}} \Delta q_{i}(x,Q^{2}) D_{q_{j}}^{h}(z,Q^{2}) - \sum_{\bar{q}_{j},\bar{q}_{i}} \Delta \overline{q}_{j}(x,Q^{2}) D_{\bar{q}_{i}}^{h}(z,Q^{2}) \right) \right\},$$
(3)

 $\mathsf{FIE} \ q_i = u, c, t \ , \ q_j = d, s, b \ , \ \overline{q}_i = \overline{u}, \overline{c}, \overline{t} \ , \ \overline{q}_j = \overline{d}, \overline{s}, \overline{b} \ .$

Здесь $\rho = \frac{G^2 s}{2\pi} \left(\frac{1}{1+Q^2/m_w^2} \right)^2$, *G*-константа Ферми, *m_w*-масса *W*-бозона, $x = \frac{Q^2}{2p \cdot q}$, $y = \frac{p \cdot q}{p \cdot k}$, $y_1 = 1 - y$, $Q^2 = -q^2 = -(k - k')^2$, $s = 2p \cdot k$, k(k') и *p* есть 4-импульс начального (конечного) лептона и протона соответственно, *P_N*-степень продольной поляризации протона, $q(x), \Delta q(x) (\bar{q}(x), \Delta \bar{q}(x))$ - функции распределения неполяризованного и поляризованного кварка (антикварка), $D_q^h(z, Q^2) (D_{\bar{q}}^h(z, Q^2))$ -функции

фрагментации кварка (антикварка) в адрон *h*.

Наблюдаемые поляризационные асимметрии процессов (1) построим как комбинации сечений (2), (3):

$$A_{\ell}^{h^*-h^*} = \frac{\left(\frac{d^3\sigma_{\ell}^{\downarrow\uparrow}}{dxdydz}\right)^{h^*-h^*} - \left(\frac{d^3\sigma_{\ell}^{\downarrow\downarrow}}{dxdydz}\right)^{h^*-h^*}}{\left(\frac{d^3\sigma_{\ell}^{\downarrow\downarrow}}{dxdydz}\right)^{h^*-h^*} + \left(\frac{d^3\sigma_{\ell}^{\downarrow\downarrow}}{dxdydz}\right)^{h^*-h^*}},$$
(4)

$$A_{t^*}^{h^*-h^*} = \frac{\left(\frac{d^3\sigma_{t^*}^{\uparrow\uparrow}}{dxdydz}\right)^{h^*-h^*} - \left(\frac{d^3\sigma_{t^*}^{\uparrow\downarrow}}{dxdydz}\right)^{h^*-h^*}}{\left(\frac{d^3\sigma_{t^*}^{\uparrow\downarrow}}{dxdydz}\right)^{h^*-h^*} + \left(\frac{d^3\sigma_{t^*}^{\uparrow\downarrow}}{dxdydz}\right)^{h^*-h^*}},$$
(5)

$$A_{\pm}^{h^{*}-h^{-}} = \frac{\left[\left(\frac{d^{3}\sigma_{\ell^{-}}^{l^{\uparrow}}}{dxdydz}\right)^{h^{*}-h^{-}} \pm \left(\frac{d^{3}\sigma_{\ell^{-}}^{\dagger\uparrow}}{dxdydz}\right)^{h^{*}-h^{-}}\right] - \left[\left(\frac{d^{3}\sigma_{\ell^{-}}^{l\downarrow}}{dxdydz}\right)^{h^{*}-h^{-}} \pm \left(\frac{d^{3}\sigma_{\ell^{-}}^{\dagger\downarrow}}{dxdydz}\right)^{h^{*}-h^{-}}\right]}{\left[\left(\frac{d^{3}\sigma_{\ell^{-}}^{l\uparrow}}{dxdydz}\right)^{h^{*}-h^{-}} \pm \left(\frac{d^{3}\sigma_{\ell^{-}}^{\dagger\downarrow}}{dxdydz}\right)^{h^{*}-h^{-}}\right] + \left[\left(\frac{d^{3}\sigma_{\ell^{-}}^{l\downarrow}}{dxdydz}\right)^{h^{*}-h^{-}} \pm \left(\frac{d^{3}\sigma_{\ell^{-}}^{\dagger\downarrow}}{dxdydz}\right)^{h^{*}-h^{-}}\right]}$$
(6)

Первая стрелка означает направление спина начального лептона (\downarrow) или антилептона (\uparrow), а вторая — направление спина протона: $\uparrow(P_N = +1), \downarrow(P_N = -1).$

Рассмотрим рассеяние на дейтроне. Сечения в этом случае равны

$$\sigma_d^{pol} = \frac{\sigma_p^{pol} + \sigma_n^{pol}}{2} \cdot (1 - 1.5\omega), \tag{7}$$

$$\sigma_d^a = \frac{\sigma_p^a + \sigma_n^a}{2} \cdot (1 - 1, 5\omega), \tag{8}$$

где σ_{d}^{pol} , σ_{p}^{pol} , σ_{n}^{pol} -- поляризационные части сечения для случая рассеяния дейтрона, протона и нейтрона соответственно; σ^{a} - неполяризационные части сечения.

С помощью (4) – (6), и учитывая соотношения для функций фрагментации л- мезона [4], асимметрии для случая рассеяния на дейтроне принимают вид

$$A_{\vec{r}\,\vec{d}}^{\pi^{*}-\pi^{-}} = \frac{\Delta u(x,Q^{2}) + \Delta d(x,Q^{2}) - y_{1}^{2} \left(\Delta \overline{d}(x,Q^{2}) + \Delta \overline{u}(x,Q^{2}) \right)}{u(x,Q^{2}) + d(x,Q^{2}) + y_{1}^{2} \left(\overline{d}(x,Q^{2}) + \overline{u}(x,Q^{2}) \right)} (1 - \frac{3}{2}\omega), \tag{9}$$

$$A_{t'd}^{\pi^{-}\pi^{-}} = \frac{y_1^2 \left(\Delta d(x, Q^2) + \Delta u(x, Q^2) \right) - \Delta \overline{u}(x, Q^2) - \Delta \overline{d}(x, Q^2)}{\overline{u}(x, Q^2) + \overline{d}(x, Q^2) + y_1^2 \left(d(x, Q^2) + u(x, Q^2) \right)} (1 - \frac{3}{2}\omega),$$
(10)

$$A_{+,d}^{\pi^{*}-\pi^{-}} = \frac{\Delta u(x,Q^{2}) + \Delta \overline{u}(x,Q^{2}) + \Delta d(x,Q^{2}) + \Delta \overline{d}(x,Q^{2})}{u_{\nu}(x,Q^{2}) + d_{\nu}'(x,Q^{2})} (1 - \frac{3}{2}\omega),$$
(11)

$$A_{-,d}^{\pi^{-}\pi^{-}} = \frac{\Delta u_{V}(x,Q^{2}) + \Delta d_{V}(x,Q^{2})}{u(x,Q^{2}) + \tilde{u}(x,Q^{2}) + (d(x,Q^{2}) + \overline{d}(x,Q^{2}))} (1 - \frac{3}{2}\omega).$$
(12)

2. Вклады кварковых ароматов.

Для дальнейшего исследования спиновой структуры лептона будем использовать дополнительную измеряемую величину – аксиальный заряд a₁, который в кварк-партонной модели равен

$$a_{3} = (\Delta u + \Delta \overline{u}) - (\Delta d + \Delta \overline{d}).$$
(13)

Вклады кварковых ароматов $(\Delta u + \Delta \overline{u}), (\Delta d + \Delta \overline{d})$ получим в результате совместного решения (11) и (13)

$$\Delta u + \Delta \overline{u} = \frac{1}{2} \int_{0}^{1} \left(a_{3} + \frac{u_{V} + d_{V}}{1 - 1,5\omega} \cdot A_{+,d}^{\pi^{*} - \pi^{*}} \right) dx, \qquad (14)$$

$$\Delta d + \Delta \overline{d} = \frac{1}{2} \int_{0}^{1} \left(\frac{u_{V} + d_{V}}{1 - 1,5\omega} \cdot A_{+,d}^{x^{*} - x^{-}} - a_{3} \right) dx.$$
 (15)

3. Численные результаты рассматриваемых асимметрий.

Асимметрия $A_{\ell'd}^{x^*-x^*}$ (рисунок 1) и $A_{\ell'd}^{x^*-x^*}$ (рисунок 2) являются значимыми в измеряемой кинематической области (x, y) и могут достигать 70 % в области больших x.

Рисунок 1. Асимметрия $A_{\ell d}^{\kappa^*-\kappa^*}$ (нижняя линия при y = 0.1, средняя – при

Рисунок 2. Асимметрия $A_{cd}^{x'-x'}$ (верхняя линия при y = 0.1, средняя – при

Рисунок 3. Асимметрии $A_{+,d}^{\pi^+-\pi^-}$ (сплошная линия) и $A_{-,d}^{\pi^+-\pi^-}$ (пунктирная линия).

Поведение асимметрии $A_{+,d}^{\pi^*-\pi^*}$ и $A_{-,d}^{\pi^*-\pi^*}$ (рисунок 3) практически одинаковое, за исключением области малых *x*, где их разница составляет около 10 %.

Заключение.

В данной работе выполнен численный анализ наблюдаемых величин – асимметрий полуинклюзивного глубоконеупругого рассеяния лептонов на дейтронах. Преимуществом рассматриваемых асимметрий является их независимость от функций фрагментации. С помощью этих асимметрий можно получить вклады *u*-, *d*-кварков в спин нуклона.

Список использованных источников

1. Forte S., Goto Y. Spin physics / S. Forte, Y. Goto. 2006. 15p. (ArXiv: hep-ph / 0609127).

2. Boer D. [et al.] Spin physics: session summary / D. Boer. 2007. 17 p. (ArXiv: hep-ph / 0707.1259).

3. Sissakian, A. N. [et al.] NLO QCD procedure of the SIDIS data analysis with respect to light quark polarized sea, -2004. -20 p. (ArXiv: hep-ph / 0312084).

4. Christova, E. A strategy for the analysis of semi-inclusive deep inelastic scattering / E. Christova, E. Leader. -2001. - 26 p. - [ArXiv: hep-ph / 0007303].

ФОРМФАКТОР ДВУХЧАСТИЧНОЙ СИСТЕМЫ В РЕЛЯТИВИСТСКОМ КВАЗИПОТЕНЦИАЛЬНОМ ПОДХОДЕ: СЛУЧАЙ ПРОИЗВОЛЬНЫХ МАСС

Ю.Д. Черниченко

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение

Для описания широкого круга вопросов физики электромагнитных взаимодействий адронов успешно используются различные полюсные векторно-доминантные модели, в частности, для расчета упругих электромагнитных адронных формфакторов, которые