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ADVANTAGES OF APT IN QCD STUDY OF HADRONIC 
TAU DECAYS

V.L. Khandramai, O.P. Solovstsova, V.G. Teplyakov
Gomel State Technical University,

246746 Gomel, Belarus

Introduction. The experimental data on the т lepton decay into 
hadrons obtained with a record accuracy for hadronic processes [1, 2, 3] 
give a unique possibility for testing QCD at low energy scale. The т lepton 
is the only lepton known at present whose mass, MT=1.78 GeV, is large
enough in order to produce decays with a hadronic mode. At the same 
time, in the context of QCD, the mass is sufficiently small to allow one to 
investigate perturbative and non-perturbative QCD effects. The theoretical 
analysis of the hadronic decays of a heavy lepton was performed by Tsai 
[4] before the experimental discovery of the t  lepton in 1975 and since 
then this process is intensively studied.

It is known, that perturbation theory (PT), which is a basic tool of 
calculations in quantum field theory, as a rule cannot be exhaustive in the 
low energy region of QCD. However, a structure of an initial perturbative 
approximation of some quantity is not a rigid construction fixed once and 
for all, but admits a considerable modification due to specific properties of 
the quantum field theory. Such modification is based on further 
information of a general character about the sum of the series. In particular,
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the properties of renormalization-group (RG) invariance [5], which is lost 
in a finite order of the initial expansion, allow rearrangements of the 
perturbative series in terms of the invariant charge. In this case, the 
properties of the series change essentially. In distinction to the initial 
expression containing large logarithms, the expansion obtained within the 
RG method can be used for analyzing the ultraviolet region. However, the 
perturbative series so derived are ill-defined in the infrared region and the 
correct analytic properties of the series in the complex ^ -p lane  are 
violated due to unphysical singularities of the perturbative running 
coupling, a ghost pole in the one-loop approximation (see discussion in [6, 
7]). The difficulty associated with these unphysical singularities is 
overcome in the analytic approach proposed by Shirkov and Solovtsov [8]. 
This approach modifies the perturbative expansion on the basis of general 
properties of the theory so that the new approximations reflect fundamental 
principles of the theory—renormalization invariance, spectrality, and 
causality. In the new expansion the correct analytic properties are restored, 
and the property of RG invariance is preserved [8]. Further developments 
and applications of the Shirkov-Solovtsov analytic approach have been 
considered in many papers (see [9] as review).

The original theoretical expression for the hadronic tau decay width 
Г(т'^hadrons vT) involves integration over small values of timelike 
momentum [4]. The perturbative description with the standard PT running 
coupling becomes ill-defined in this region and some additional ansatz has 
to be applied to get a finite result for the hadronic width. To this end, one 
usually transforms the initial expression, by using Cauchy’s theorem, to a 
contour representation for Rx [10], which allows one to give meaning to 
the initial expression and, in principle, perform calculations in the 
framework of perturbative QCD. Assuming the validity of this 
transformation it is possible to present results in the form of a truncated 
power series with as(Mx) as the expansion parameter [11, 12]. There are 
also other approaches to evaluating the contour integral. The Le Diberder -  
Pich prescription [13] allows one to improve the convergence properties of 
the approximate series and reduce the renormalization scheme (RS) 
dependence of theoretical predictions. The possibility of using different 
approaches in the perturbative description of т lepton decay leads to an 
uncertainty in the value of as(Mx) extracted from the experimental data. 
Moreover, any perturbative description is based on this contour 
representation, i.e., on the possibility of converting the initial expression
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involving integration over timelike momenta into a contour integral in the 
complex momentum plane. To carry out this transition by using Cauchy’s 
theorem requires certain analytic properties of the hadronic correlator or of 
the corresponding Adler function [14]. However, the occurrence of 
incorrect analytic properties in the conventional PT approximation makes 
it impossible to exploit Cauchy’s theorem in this manner and, therefore, 
prevents rewriting the initial expression for RT in the form of a contour 
integral in the complex momentum-plane. The method based on the 
Shirkov-Solovtsov analytic approach and called analytic perturbation 
theory (APT) [15] ensures the correct analytic properties of such important 
objects as the hadronic correlator or of the corresponding Adler function, 
leads to equality between the initial theoretical expression for the width 
Г(т"-^hadrons vT) and the corresponding contour representation.

The aim of this paper is to reveal features of the application of the PT 
and APT expansions in studying of hadronic tau decays. We also consider 
the Adler function which is connected to the correlator of quark-antiquark 
current and can be used in a description of normalized hadronic decays 
width of the tau lepton, Rx.

Analytic perturbation theory. A main object in the description of 
hadronic tau decays and of many other physical processes is a correlator П 
{cp-) or the Adler function D(Q^), which is connected to the correlator by 
the formula

D{Q2) = -Q 2 d^ Q p - • ( 1)

We use the standard convention (p  = - p  > 0 in the Euclidean 
region. The integral representation for the Z)-function is given in terms of 
the function R(s) = Im П(.у)/л:

и
The representation (2) defines the function D((p) as the analytic 

function in the complex g^-plane with the cut along the negative real axis.
It is convenient to separate QCD contributions, d(Q^) and r(s), in the 

functions D oc 1+ d  and R oc 1+ r , respectively, which are related by the 
formulae

<3)
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гМ =
1 xrdz

J 72 ni d(-z) (4)

The integration contour in (4) lies in the region of analyticity of the 
integrand and encircles the cut of d(-z) on the positive real z axis.

Within the framework of the APT the basic object is a spectral 
function р(ст) which enters into some integral representation. In particular, 
for two-point functions, it is the Kallen-Lehmann representation; whereas 
for structure functions for inelastic lepton-hadron scattering, the integral 
representation is the Jost-Lehmann-Dyson one [16]. The spectral function 
p(o) for the objects under consideration here can be obtained by using the 
perturbative series as a initial approach. Truncated at the fourth-loop level, 
the perturbative ^-function, is written in terms of the perturbative running 
coupling is

^ r ( e 2) = ^ ( e 2) + ^ ( e 2) + ^ ( e 2) + ^ r ( e 2)’ (5)
where in the ms -scheme for three active quarks (ny=3) relevant in т decay, 
the expansion coefficients are d,MS = 1.6398, af2MS =6.3710 and d3MS = 49.075 [17]. 
This expansion generates the following approximation to the spectral 
function p(a):

p (^ )=  P,(<r)+ d,p2(a)+d2 p3(a )+ d , p4(cr) +  .. .  , (6)

where the coefficients d \, a^and ^3 are the same as in the PT series (5) and 
the expansion functions are determined by the discontinuity of the 
corresponding power of the perturbative running coupling,
pk(a ) = \m [akPT( - a - ie ) ] .

By using the spectral function (6), we obtain the expression for d- 
fimction in the form of the non-power expansion

(<22) = 41т {&)+dA  {Q1) + d2A% (Q2)+d,A% (Q2), (7)
where (f>2) are analytic functions:

4 l ( e 2)=-]4o-
n 0 a + Q1 (6)

Note here that the analytic running coupling аЛРГ(д2)~,7гЛ% (о2 ) (see [18]
for details).

A significant source of theoretical uncertainty arises from the 
Renormalization Scheme (RS) dependence of the results obtained due to 
the inevitable inclusion of only a finite number of terms in the PT series. In 
QCD, that uncertainty is the greater, than smaller a value of typical energy 
of the process. There are no general principles that give preference to a
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particular RS, and in this sense, all schemes are equivalent. The APT 
method improves this situation and gives very stable results over a wide 
range of RS. To demonstrate this fact, in Fig. 1 we plot functions dp^Q^) 
and dApi(Q^) in different RS. It is seen that predictions in the perturbative

approach for d(Q^) obtained within different RS diverge considerably (see 
dashed curves A and B). Note should be made of the fact that the schemes 
A and В are similar to each other and to the optimal PMS [19] and ECH 
[20] schemes in the sense of the cancellation index [21]: C4 = Cg = 2. For 
the ECH method, the cancellation index is minimal, equaling unity. The 
cancellation index for the ms scheme turns out to be somewhat bigger,

Figure 1 -  Renormalization scheme dependence of the ^-function (3) as 
a function of ( ft  in the PT (6) and APT (7) cases. The APT results are 
shown as solid lines which are very close to each other and practically 

merge into one curve.

In Fig. 1, we also draw the curves representing PT results in PMS, 
ECH, MS and К schemes. For the same schemes, in Fig. 1 we also present 
results obtained in the APT approach. In this case the scheme arbitrariness 
is extremely small, and all the curves corresponding to the schemes A, B, 
PMS, ECH, ms , and К merge into one thick solid curve. Thus, in the APT, 
the scheme arbitrariness is very dramatically reduced as compared to that 
in analogous PT calculations.
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The tau ratio Rx. The total hadronic decays width of the tau lepton 
is given by difference of its total width and the partial widths for the 
electronic and muonic decays. In an analogy to well-known Drell-ratio for 
the e+e~ annihilation into hadrons, one can define the Rx- ratio. The 
theoretical expression for Rx can be presented as

*т=з ( Ы 2+\Гш\2) sE w (i+8T)> (ii)
where Vucj and Vus are elements of the CKM quark mixing matrix, Se w  is 
the electroweak factor, and the QCD contribution, 5T, is expressed via the 
function r(s) as follows

This expression is a starting point in our analysis. Within the PT, the 
integral (12) cannot be evaluated directly due to unphysical singularities of 
the PT running coupling lying in the range of integration. The most useful 
trick to rescue the situation is to appeal to analytic properties of the 
correlator Щср-). The relations between the functions r(s) and d(Q^), 
according Eqs. (3) and (4), allow us to represent 8T as a contour integral in 
the complex z plane by choosing the contour to be a circle of radius 
|z| = MT2 [11]

It would seem that the transformation to the contour representation 
(13) allows one to avoid this difficulty, since in this case unphysical 
singularities of the running coupling lie outside of the contour, and the 
procedure of integration can formally be easily accomplished. However, in 
our opinion, this trick (“sweeping the difficulty under the rug") does not 
means solve the problem. Actually, incorrect analytic properties of the 
running coupling result in Eqs. (12) and (13) for 8T being no longer 
equivalent [14, 22], and, if one remains within the PT, nothing can be said 
about the errors introduced by this transition. The APT may eliminate these 
problems.

The PT description for the 5X is based on the contour representation 
(13) and can be developed in the following two ways. In the Braaten’s (Br) 
method [12] the quantity (13) is represented in the form of truncated power
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series with the expansion parameter ax. In this case the three-loop 
representation for 8X is

5T̂ r= ax + r\ ax2+ Г2 ax2 + r3 ax^,
ax= арт(м*)/п, (14)

where coefficients r\, Г2 and r3 in the ms scheme with three active flavors 
are q  =5.2023, r2=26.366 and r3= 127.079 [17].

The method proposed by Le Diberder and Pich (LP) [13] uses the PT 
expansion of the d-function (5). It results to the following non-power 
representation

Ьч1р=А(У X ax) + d] A(2X ax) + d2 A & \ ax) + d3 А Щ  ax) (15)
with

Both these PT approaches are widely used in the analysis of т-decay 
data. However, their status is different. The formula (14) can be obtained 
self-consistently. In expression (12) one has to use for r(.s) the initial 
perturbative approximation with the expansion parameter a^. Then, after

integration over s, the logarithmic terms containing 1п(Мх2/ц2) are

removed by setting ц2 = Mx2. The same result is obtained if the contour 
representation (13) is used and the «i-function is taken in the form the 
initial perturbative approximation which preserves the required analytic 
properties. As for the representation (15), it will be consistent with 
expressions (12) and (13), if a(z) has analytic properties of the Kallen- 
Lehmann type. The use of the standard PT running coupling with 
unphysical singularities in (16) breaks this consistency.

The APT description can be equivalently phrased either on the basis 
of the original expression (12), which involves the Minkowskian quantity 
r(s), or on the contour representation (13), which involves the Euclidean 
quantity d(Q2). Within the framework of the APT approach, both forms 
can be rewritten in terms of the spectral function p(cr) as [15]

In Fig. 2, we illustrate the dependence of the 7?T-ratio on the running 
coupling in the PT(Br) and APT approaches, comparing the convergence
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properties in the one-loop (dotted lines), two-loop (dashed lines), and 
three-loop (solid lines) approximations. Numbers above the curves specify 
the order of the approximation. The shaded area shows the corridor of 
experimental errors for /?техРг=3.475±0.011 [23]. The convergence 
properties of the APT expansion seem to be much improved compared to 
those of the PT expansions.

Figure 2: The PT(Br) and APT predictions for the Rx ratio vs. the running 
coupling in the ms scheme. The numbers labelling the curves denote the 

level of the loop expansion used.

Our investigation together with other results (see [24]), allows us to 
formulate the following features of the APT method: (i) this approach 
maintains the correct analytic properties and leads to a self-consistent 
procedure of analytic continuation from the spacelike to the timelike 
region; (ii) it has much improved convergence properties and turns out to 
be stable with respect to higher-loop corrections; (iii) renormalization 
scheme dependence of the results obtained within this method is reduced 
dramatically. Note, for the hadronic % decay the last statement is easy for 
understanding if one takes into account the result which is shown in Fig. 1 
for ^-functions in different RS: instead of RS unstable and rapidly 
changing PT results, the APT predictions are practically RS independent.

Conclusions. The analytic approach proposed by Shirkov and 
Solovtsov modifies the perturbative expansions such that the new
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approximations reflect basic principles of the theory, such as 
renormalization invariance, speciality, and causality. Analytic 
perturbation theory, which was used here in the hadronic t  decay 
description, gives a self-consistent description of both the spacelike and 
timelike regions.

We performed a comparative analysis of the advantages and 
disadvantages of different forms of perturbative expansion both from the 
general standpoint and in the context of application to the inclusive т 
decay. We presented the arguments in favor of the APT, which not only 
agrees with the general principles of the theory but also has a number of 
practical advantages. In the analytic approach, the two methods for 
describing the inclusive t  lepton decay in terms of timelike or spacelike 
variables are equivalent.

Within the APT, the dependence of the results on the choice of the 
renormalization prescription is essentially reduced, and we can speak of 
the practical independence of the two-loop expressions from the 
renormalization scheme. The calculations based on the APT thus 
considerably reduce the theoretical uncertainty of the results. Therefore, 
using it as the perturbative component increases the reliability of 
information about the QCD parameters obtained from the experimental 
data known with high accuracy for the т lepton decay.
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MODELING OF VACUUM CIRCUIT BREAKER DETERIORATION
PROCESS

Y. Tolstoguzov, V. Krotenok
Gomel State Technical University, Republic of Belarus

Introduction
Ensuring reliable operation of power plants, substations and 

industrial power systems is largely determined by trouble-free operation of 
high voltage circuit breakers.
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