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Abstract 
We develop MES-techniques for more efficient calculating of scat­

tering amplitudes involving both massive fermions of an arbitrary 
polarization and massless fermions in quantum field theories. The 
purpose of this work is to calculation matrix elements of fermions 
with spin 1/2. 

1 Introduction 

When evaluating a Feynman amplitude involving fermions, the amplitude 
is expressed as sum of terms which have the form 

M.xp,Ak (p, Sp,  k, sk ; Q) = M.xp,Ak ( [p] ,  [k] ; Q) = 
= w1p (p, sp) Q wfk (k, sk) , (1) 

where >.P and >.k are spin indices of the external fermions with four­
momenta p, k and arbitrary polarization vectors Sp, sk · The operator Q 
is a sum of products of Dirac ')'-matrices. The notation wfp (p, sp) stands 
for either u_xp (p, sp) (bispinor of fermion; A = +1) or v_xp (p, sp) (bispinor 
of antifermion; A = -1) .  

The main aim of  calculation i s  to transform ( 1) to explicitly scalar form 
(scalar products of four-vectors, Lorentz tensors and so on) . The main ap­
proach, which has gained popularity in the past decades, is to calculate 
Feynman amplitudes directly. Many different methods of calculating re­
action amplitudes with fermions have been developed [1 ,  2, 3, 4] et.al. In 
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the paper we describe an approach to Feynman diagrams which is based 
on the using of an isotropic tetrad in Minkowski space and massless basis 
spinors connected with it and we will call it as Method of Basis Spinors 
(MBS) [5, 6] ) Let us briefly to describe the main relationships of MBS. 

2 Isotropic tetrad and massless basis spinors 

Let us introduce the orthonormal four-vector basis in Minkowski space 
which satisfies the relations: 

3 
lt{ e l� - L: l.f • lj = gµv , ([A . [B) = gAB 1 

j=l 

where g is the Lorentz metric tensor. 

(2) 

With the help of vectors lA we can define lightlike vectors, which form 
the isotropic tetrad in Minkowski space 

bp = (lo + pl3)/2, n;. = (.Xli + il2)/2 , (.X, p = ±1) . (3) 

From Eqs. (2) , (3) it follows that 

(4) 
1 

gµv = L [ b� · b"..;. + ii� · n"..;.] , (5) 
>-=-1 

� = 2 � , n� = 2 n� .  

It is always possible to construct the basis of an isotropic tetrad (3) as 
numerical four-vectors 

(b±i)µ = (1/2) { 1, 0, 0, ±1} , (n±i)µ = (1/2) {0, ±1, i, O} (6) 

or by means of physical vectors for reaction. 
By means of the isotropic tetrad (3) we define basis spinors u;. (b-1) 

and U;. (b1) : 

�-1U>. (b-1) = 0 , U;_ (b1) = �1U->. (b-1) , 

W;.U;. (bA) = U;. (bA) , (A = ±1) 
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with matrix w;. = 1/2 (1 + >.15) and normalization condition 

U;. (bA) U;. (bA) = W;. tfA · (9) 
The relative phase between basis spinors with different helicity is given by 

(10) 
The important property of basis spinors (7) is the completeness re­

lation: 
1 L U;. (bA) U_>. (b-A) = I ' (1 1) 

>.,A=-1 
which follows from Eqs. (7)-(10) . Thus, the arbitrary bispinor can be de­
composed in terms of basis spinors u;. (bA) · 

3 Main equations of MBS and Dirac spinors 

Arbitrary Dirac spinor can be determined through the basis spinor (7) 
with the help of projection operators T;. (p, sp) = u;.p (p, sp) u;.p (p, sp) · The 
Dirac spinors w1 (p, sp) for massive fermion and antifermion with four­
momentum p (p2 = m�) , arbitrary polarization vector Sp and spin number 
,\ = ±1  can be obtained with the help of basis spinors by means of equation: 

wA ( s ) = (A>.) (p + Amp) ( l + Af'5 /p) u_ (b ) ( 12) >. p, P 2J(b1 · (p + mpsp)) Ax>. 1 

Spinar products of basis spinors are simple and similar to scalar prod­
ucts of isotropic tetrad vectors 

U;. (be) Up (bA) = b;.,-pbC,-A . 
With the help of Eq. (5) Dirac matrix /µ can be rewritten as 

1 
1µ = L [fl_);�+ rL;.n�] 

>-=-1 
and using Eqs. (8) , (10) and ( 14) we can obtain that 

Iµ U;. (bA) = b�U->. (b-A) - A  n�Ax>.U->. (bA) ' 

(13) 

(14) 

(15) 
which allow to transform Dirac matrix to some combination of isotropic 
tetrad vectors on basis spinor space and 

( 16) 

Eqs. ( 13) , (15) and ( 16) underlies the method of basis spinors (MBS). 
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4 MBS and technique of "building" blocks 

The basic idea of Method of Basis Spinors is to replace Dirac spinors 
in Eq. (1) by massless basis spinors U>. (b±1) (Eq. (12) ) , and to use only three 
Eqs. (13) , (15) and (16) to calculate matrix element (1) in terms of scalar 
functions. 

Let us consider an important type of matrix element (1) , when p = b_e 
and k = bA , i.e. 

Ma,-p (be ) b_A ;  Q) = r�/ [Q] = Ua (be) Q U_p (b-A) . (17) 
We call this type of matrix element as basic matrix element. By means 
of MBS relations (13) , (15) and (16) it is easy to calculate r�p4 in terms 
of the isotropic tetrad vectors. 

With the help of completeness relation (1 1) the amplitude (1) with is 
expressed as combinations of the lower-order matrix elements ( "building" 
blocks) 

1 
M>.p,>.k (p, sP k, sk ;  Q) = L { wZ (p, sp) u_a (b-e) } x 

A, e,a, p=-1 
x {ua (be) Qu_P (b-A)} { ilp (bA) wfk 

(k, sk) } = 
1 

= 2: 
1 '"" -(e, D) ( ) fe A [Q] (A, F) (k ) L...,, s<T,Ap p, Sp a,p s p,.\k ) Sk a, p=-1 A, e=-1 

(18) 

Decomposition coefficients for helicity states of fermions can be easily cal­
culated: 

s��D) (p, Shel) = D>.. Wm(->..pDp)f(p)..., D)D��/2,-m;2 (¢, 8, -¢) (19) 

where 

Wm(±p) = vwm(P) ± p ) Wm(P) = VP2 + m2 ) p = IP I )  
f(A, D) = JA,-1 + DJA,1 (20) 

and D!{;a2 (¢, e, -cp) = exp (-i¢) d!.(;a2 (8) exp (-icp) is Wigner function [7] .  

5 Vector boson decays 

We will now apply the methods described above by calculating the Born 
amplitude for the decay of the vector boson with the mass mv and helicity 
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1J into fermions 

(21) 
where f is a fermion with helicity A. 

Using Feynman rules we can been written the expression for the am­
plitude decay (21) in general form 

Mfk1 ,; .. k2 (V -+ k!J) = R:; u;i..k1 (ki , m1) (E�/µ) [f1g�wT] v;i..k2 (k2 , m2) ,  

(22) 
where gr1 denote the generic left- and right-handed fermion-fermion-vector 
couplings and Rf; is some function of fermion charges and elements of CKM 
matrix. 

We specify the kinematics of decay (21 )  in the rest frame and helicity 
states of quarks and boson 

pµ = (mv, 0, 0, 0) , kj_ = (wm1 (k) , k sin e, O, k cos e) , 

k� = (wm2 (k) , -k sin e, 0, -k cos e) ' (23) 

Jm4 + (m2 _ m2)2 _ 2m2 (m2 + m2) _Al/2 (m2 m2 m2) k = lkl = v 1 2 v 1 2 = v ' 1 ,  2 
2mv 2mv ' 

2 2 + 2 2 2 2 
(k) = mv - m2 m1 (k) = mv + m2 - m1 Wm1 2 ' Wm2 · mv 2mv 

The polarization vector E� of boson is 

(24) 

E�=O = (0, 0 , 0, 1) ' E�=±l = (0, 1/ h, ilJ I h, 0) (25) 
for longitudinal polarization (1J = 0) and transverse (1J = ±1)  polarization 
respectively. 

Relations ( 13) , ( 15) and (18)-(20) allow to calculate of matrix element 
(22) in terms of scalar products: 

1 
Mfkl ';i..k2 (v --+ f;h) = R:; L g� n�;/2,->..k2 12 (¢, e, -¢) x A,p=-1 
x [A D�1��/2,>..k 1/2 (¢, e, -¢) (Eu . L11)-
-D�;/2,>..k1 /2 (¢, e, -¢) (Eu . TLAp)] Wm1 (-pAk1k)Wm2 (PAk2k) . (26) 
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Using Eqs. (6) , (23) , the Clebsh-Gordan decomposition of D-matrix 

n;(\2 (¢, e, -¢)D!(�a2 (¢, e, -¢) = 

= �J(3 + 4>110-1)J(3 + 4>.20-2)Dli+ai,.\2+a2 (¢, e, -¢) + 

+2>.1>.25.\1 ,-a15.\2,-a2 , here (>.1,2 , 0"1,2 = ±1/2) , (27) 

Eqs. (6) , (23) and 

we get 

(ca · bA) = 5a, oA , (ca · iiµ) =  -J2 ba2,1 O"ba,-p , (28) 

Mfk1 ,.\k2 (V � fih) = Ri; (o-5a2,1 - 5a, o) J3 - �ki>.k2 d�,(.\ki -.\k2 );/B) x 
1 X L g�Wm1 (-p>.k1k)Wm2 (p>.k2k) · (29) 

p=-1 

Let us consider the useful relations for Wm(pk) in rest frame. After simple 
calculations we obtain that 

Wm1 (rk)Wm2 (pk) = 

= � [ 5r,pV�
m-i---m-�-2

-
+_r_>._1_12_(_m_i_,-m-�-, -m

-�) 

+5r,-p m�2 - �m2/mi (�m2 + r>.1/2 (mi, m�, mm] (30) 

When if m1 = m, m2 = 0 we obtain that 

If m1 = m, m2 = m we get that 

Wm(..\k)Wm(pk) = mv [5.\,-p,Bv + 

+5.\,p � 2(1 + pJl - 4,Bi) - 4,Bi 
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at 
Evaluating the IMf .\ I with the help of Eq. (29) and (30) we arrive k1 ' k2 

I Mfk, ,Ak2 (v -+ k.G) l
2 

= (60-2 ,1 + 6a, o) I Rlt 1 d�. (,\k1 -,\k2 );2 (e) l
2 
x 

x ( l ,t, g;' s;:1 .. 1 ' J,,, ,,, + 2 l ,t/; s;:;;, I ' s,,, ,,, ) , (33) 

where 

s(I) = � m2 - 6.m2/m2 (6.m2 - .>.. p)..l/2 (m2 m2 m2)) p,.\1 J2 12 v 1 v '  l > 2 ' 
S(II) _ 1 J 2 2 ' ' 1/2 ( 2 2 2) p,.\1 - J2 mv - m12 - A1 pA my, m1 , m2 . (34) 

The partial decay rate (partial width) of unpolarized vector boson into 
unpolarized pair of fermions in its rest frame is given 

Decay width of V -+ f d2 

with the help of relation 

.,.. (2J2+ l) J dB sin B l d�,p(B) l 2 = 1 
0 

and Eq. (33) reduced to 

r (v -+ f;!J) = 24 k 2 IR� l2 x 7rmy 

(36) 

(37) 

x t_ ( I t g� s��lk1 l2 6,\k, ,Ak2 + 2 I t  g� s��:�1 12 <>,\k, ,-Ak2)(3s) >.k,,>.k2--l p--l p--l 
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6 Examples of vector boson decays 

6 . 1  W ---+ £De 

The left- and right-handed couplings of the fermions to the W-boson are 
defined w 1 � 9>. = c5;.,-1 � , Rw = (-l)v 47rCx . (39) v 2sw 
In SM the contribution of Born amplitude is given by 

Mfk1 ,;.k2 (W -+ £De) = (-l) v'4ro (O"c5,,.2 ,1 - c5u, o) d�, (>-.k, ->-.k2 )/2 (B) X 

xc5>-.k2 ,-1 ;;:w J1 - ,Bfv ( hc5>-.k , ,->-.k2 + c5>-.k, ,>-.k2,8w) (40) 
Using of Eqs. (38) , (39) and further simplification gives 

r (W --+ £De) = o:2
M1; (1 - ,Bfy ) 2 (2 + ,Bfy) 4sw (41) 

Neglecting the fermion masses (41) leads to the standard expression of 
decay width [8] 

6 . 2  z0 ---+ il 

o:Mw f (W --+ £De) = -2- . 12sw (42) 

The left- and right-handed couplings of the fermions ( £ = e, µ, T) to the 
Z-boson are defined 

z - (s?v - 1/2) z - sw R - (-1) r:o--4 9-1 - ' 91 - ' z - v '!7!'0: . cwsw cw 
Similarly we obtain for the Born amplitude of process zo --+ £l 

(43) 

Mfk, ,>-.k2 (Z0 --+ £l) = (-l)v'4ro (O"c5u2, 1 - c5u, o) d�, (>-.k, ->.k2 );2 (B)mz x 

x 
P
t1 

9: ( c5>-.k;t2 
J1 - p>.k, J1 - 4,8� - 2,8� + c5;.k, ,>-.k2 ,Bz) (44) 

Decay width of zo --+ £l is given by 

r (z0 --+ el) =  o:�z J1 - 4,8� ( (9:1) 2 + (9f) 2 + 89f9:if3�) (45) 
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Neglecting the fermion masses ( 45) leads to 

r ( zo -t el) = a��z ( (g�i) 2 + (gf) 2) (46) 

7 Conclusion 

We have formulated a effective method to calculate Feynman amplitudes 
for various processes with fermions. In our approach (MBS) : 
1 .  We don't use an explicit form of Dirac spinors and ')'-matrices (as well 

as basis spin ors) 

2 .  We don't use calculation of traces 
The M BS enables us to calculate blocks of Feynman diagrams (current-like 
constructions and even more complicated structures) and then use them 
as universal functions during the process of calculation. 
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