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Abstract 
We consider computational problems in the framework of non­

power Analityc Perturbation Theory and Fractional Analytic Per­
turbation Theory that are the generalization of the standard QCD 
perturbation theory. The singularity-free, finite couplings Av(Q2) ,  
'ilv ( s )  appear i n  these approaches as analytic images o f  the standard 
QCD coupling powers a�(Q2) in the Euclidean and Minkowski do­
mains, respectively. We provide a package "FAPT" based on the 
system Mathematica for QCD calculations of the images Av(Q2) ,  
'ilv(s) u p  t o  N3LO o f  renormalization group evolution. Application 
of these approaches to Bjorken sum rule analysis and Q2-evolution 
of higher twist µ�-n is considered. 

1 Introduction 

The QCD perturbation theory (PT) in the region of space-like momentum 
transfer Q2 = -q2 > 0 is based on expansions in a series in powers of 
the running coupling a.. (µ2 = Q2) which in the one-loop approximation 
is given by a.�1) ( Q2) = ( 47r /b0) / L with b0 being the first coefficient of the 
QCD beta function, L = ln(Q2 / A2) ,  and A is the QCD scale. The one-loop 
solution a.�1) ( Q2) has a pole singularity at L = 0 called the Landau pole. 
The £-loop solution a.�f) ( Q2) of the renormalization group (RG) equation 
has an £-root singularity of the type L-l/f at L = 0, which produces the 
pole as well in the £-order term de a�(Q2) .  This prevents the application 
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of perturbative QCD in the low-momentum space-like regime, Q2 ,....., A2 , 
with the effect that hadronic quantities, calculated at the partonic level 
in terms of a power-series expansion in a8(Q2) ,  are not everywhere well 
defined. 

In 1997, Shirkov and Solovtsov discovered couplings A1 ( Q2) free of un­
physical singularities in the Euclidean region [l] , and Milton and Solovtsov 
discovered couplings l.2l1(s) in the Minkowski region [2] . Due to the absence 
of singularities of these couplings, it is suggested to use this systematic ap­
proach, called Analytic Perturbation Theory (APT) , for all Q2 and s. The 
APT yields a sensible description of hadronic quantities in QCD (see re­
views [3, 4, 5] ) , though there are alternative approaches to the singularity 
of effective charge in QCD - in particular, with respect to the deep in­
frared region Q2 < A 2 . One of the main advantages of the APT analysis 
is much faster convergence of the APT nonpower series as compared with 
the standard PT power series (see [6] ) .  Recently, the analytic and nu­
merical methods, necessary to perform calculations in two- and three-loop 
approximations, were developed [7, 8, 9] . The APT approach was applied 
to calculate properties of a number of hadronic processes, including the 
width of the inclusive T lepton decay to hadrons [10, 11 , 12, 13, 14] , the 
scheme and renormalization-scale dependencies in the Bjorken [15, 16] and 
Gross-Llewellyn Smith [17] sum rules, the width of Y meson decay to 
hadrons [18] , meson spectrum [19] , etc. 

The generalization of APT for the fractional powers of an effective 
charge was done in [20, 21] and called the Fractional Analytic Perturba­
tion Theory (FAPT) .  The important advantage of FAPT in this case is 
that the perturbative results start to be less dependent on the factoriza­
tion scale. This reminds the results obtained with the APT and applied 
to the analysis of the pion form factor in the 0( a;) approximation, where 
the results also almost cease to depend on the choice of the renormaliza­
tion scheme and its scale (for a detailed review see [22] and references 
therein) . The process of the Higgs boson decay into a bb pair of quarks 
was studied within a FAPT-type framework in the Minkowski region at 
the one-loop level in (23] and within the FAPT at the three-loop level 
in (21] . The results on the resummation of nonpower-series expansions 
of the Adler function of scalar Ds and a vector Dv correlators within 
the FAPT were presented in [24] .  The interplay between higher orders 
of the perturbative QCD expansion and higher-twist contributions in the 
analysis of recent Jefferson Lab data on the lowest moment of the spin-
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dependent proton structure function, rf ( Q2) ,  was studied in [25] using 
both the standard PT and APT/FAPT. The FAPT technique was also 
applied to analyse the structure function F2(x) behavior at small values of 
x [26, 27] and calculate binding energies and masses of quarkonia [28] . All 
these successful applications of APT /FAPT necessitate to have a reliable 
mathematical tool for extending the scope of these approaches. In this 
paper, we present the theoretical background which is necessary for the 
running of Av [L] and 2lv [L] in the framework of APT and its fractional 
generalization, FAPT, and which is collected in the easy-to-use Mathemat­
ica package "FAPT" [29] .  This task has been partially realized for APT as 
the Maple package QCDMAPT in [30] and as the Fortran package QCDMAPLF 

in [31] . We have organized "FAPT" in the same manner as the well-known 
package "RunDec" [32] . A few examples of APT and FAPT applications 
are given. 

2 Theoretical framework 

Let us start with the standard definitions used in "FAPT" for standard 
PT calculations. The QCD running coupling, as (µ2) = as [L] with L = 

ln[µ2 / A2] , is defined through 

das [L] _ f3 ( [L] · ) _ _ [L] """' b ( ) (as [L] ) k+l 
dL - as , n1 - as L.., k n1 47r ' k2'.0 (1)  

where n1 is  the number of active flavours. The /3-function coefficients are 
given by (see [33] ) 

bo (n1) 

b1 (n1) 

bz (n1) 

b3 (n1) 

2 1 1 - -n1 3 ' 
38 

102 - -n1 3 , 
2857 5033 325 2 -2- - 13n1 + 54n1 , 
149753 3564 ( - [ 1078361 6508 ( ] 

6 + 3 162 + 27 3 ni 

[50065 6472 ( ] n2 1093 
n3 + 162 + 81 3 f + 729 f . 

212 

(2) 



( is Riemann's zeta function. We introduce the following notation: 

Then Eq. ( 1 )  in the l-loop approximation can be rewritten as: 

In the one-loop (£ = 1) approximation (ck(n1) = bk(n1) = 0 for all k 2: 1 )  
we have the solution 

1 a(l) [L] = L (5) 

with the Landau pole singularity at L --+ 0. In the two-loop (£ = 2) 
approximation (ck(n1) = bk(n1) = 0 for all k 2: 2) the exact solution of 
Eq. (1) is also known [34] 

-C1-l (n1) [L J with zw [L] = -c1-1 (n1) e-I-L/c, (n1) , (6) a(2) ; ni = 1 + W_1 (zw [L]) 

where W_1 [z] is the appropriate branch of the Lambert function. 
The three- (ck(n1) = bk(n1) = 0 for all k 2: 3) and higher-loop solutions 

a(l) [L; n1] can be expanded in powers of the two-loop one, a(2) [L; n1] ,  as 
has been suggested and investigated in [8 , 9 ,  14]: 

a(t) [L; n1] = L, c�t) (a(2) [L ; n1Jr . (7) 
n2;1 

The coefficients C�t) can be evaluated recursively. As has been shown 
in [9] , this expansion has a finite radius of convergence, which appears to 
be sufficiently large for all values of n1 of practical interest . Note here 
that this method of expressing the higher-£-loop coupling in powers of 
the two-loop one is equivalent to the 't Hooft scheme, where one puts by 
hand all coefficients of the ,8-function, except b0 and b1 , equal to zero 
and effectively takes into account all higher coefficients b; by redefining 
perturbative coefficients d; (see for more detail [35] ) .  

The basic ob�ects in  the Analytic approach are the analytic couplings in 
the Euclidian A}l [L; n1] and Minkowskian iit�f) [L. ; n1] domains calculated 
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with the spectral densities pSe) (a; n1) which enter into the Kallen-Lehmann 
spectral representation: 

(8) 

(9) 

It is convenient to use the following representation for spectral func­
tions: 

(fl [L · ] = _!_ 1  ( (£) [L - .  . ] ) 11 _ sin [v ip(£) [L; n1J l Pv , nf - m o:s i7r , nf -
(/3 [L· ] )  · 7r 7r f R(o ' n1 v 

( 10) 

In the one-loop approximation the corresponding functions have the 
simplest form 

whereas at the two-loop order they have a more complicated form 

with W1 [z] being the appropriate branch of Lambert function. 

(12) 

( 13) 

In the three- (£ = 3) and four-loop (£ =  4) approximation we use Eq. (7) 
and then obtain 

I 

ei cp<2J [L] (£) ei k 'P(2J[L] 1 -l 
= -[-l + I: ck k [ l , R(2l L k2".3 R<2l L 

(14) 

4?(t) [L] _ [R(e) [L] cos (4?<2l [Ll) '°' (t) R(t) [L] cos (k 4?(2) [Ll) ] (l5) - arccos [ ] + L.J Ck k [ ] · 
R(2) L k2".3 R(2) L 

Here we do not show explicitly the n f dependence of the correspond­
ing quantities - it goes inside through R(2) [L] = R(2) [L; n1J , 4?(2) [L] = 

[ J (3) (3) [ l c(4) (4) [ J ( ) . 
'P(2) L; nf ' ck = ck n1 '  k = ck n1 '  Ck = Ck n1 . The Figure 1 
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Figure 1 :  The one-loop analytic functions AS1J [L] (left) and !2LS1l [L] (right) 
for n1 = 3 and different values of v. 

shows the behavior of the one-loop analytic images in the space- and time­
like domains for different values of v. It should be note the following 
properties of the one-loop A,,[L] and !2l,, [L] : 

Ao[L] 
Am[±oo] 

(Am[-L]) 
!2lm[-L] 
(A-m[L]) 

!2l_m[L] 

2lo [L] = l ;  ( 16) 
!2lm[±oo] = 0 for m 2: 2 , m E N ; ( 17) 

m (Am[L]) (-1) !2lm[L] for m 2: 2 , m E N ; (18) 

(
_1 _ 1  

L
[(

m 
. )m+l]

) for m 2: 2 , m E N  . ( 19) 
7r(m+l) m L + rn 

Thus, "inverse powers" A-m[L] = Lm coincide with the inverse powers 
of the effective charge a-m[L] = Lm, while for the "inverse degrees" arise 
additions in the form of lower degree L with 7r2-factors in the Minkowski 
domain. 

The package "FAPT" performs the calculations of the basic required 
objects: (o:�eJ [L, n1]r in Eqs. (5) , (6) and (7), ASeJ [L, n1] in Eq. (8) and 

!2lSl) [L, n1] in Eq. (9) up to the N3LO approximation (£ = 4) with a fixed 
number of active flavours n1 and the global one with taking into account 
all heavy-quark thresholds (for more details and description of procedures 
see [29] ) .  As an example, we present here the following Mathematica real­
izations for analytic coupling ASl) [L, n1] and !2lSl) [L, n1] :  

• AcalBarf [L ,Nf ,Nu] computes the £-loop nrfixed analytic coupling 
ASe) [L, n1] in the Euclidean domain, where the logarithmic argument 
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L=ln[Q2/A2] , the number of active flavors Nf=n1 , and the power 
index Nu=v; 

• UcalBare [L , Nf , Nu] computes the £'-loop n1-fixed analytic coupling 
2l�e) [L, n1] in the Minkowski domain, where the logarithmic argument 
L=ln[s/ A2] , the number of active flavors Nf=n1 , and the power index 
Nu=v. 

3 APT and FAPT applications 

As an example of the APT application, we present the Bjorken sum rule 
(BSR) analysis (see for more details [39] ) .  The BSR claims that the differ­
ence between the proton and neutron structure functions integrated over 
all possible values 

ri-n (Q2) = 11 [.ifi'(x, Q2) - g�(x, Q2)] dx ' (20) 

of the Bjorken variable x in the limit of large momentum squared of the 
exchanged virtual photon at Q2 ---+ oo is equal to gA/6, where the nucleon 
axial charge gA = 1 .2701 ± 0.0025 [33] . Commonly, one represents the 
Bjorken integral in Eq. (20) as a sum of perturbative and higher twist 
contributions 

fp-n(Q2) = gA [l _ � (Q2)] + � µi":n 1 6 BJ � Q2i-2 
. 

i=2 
(21) 

The perturbative QCD correction �Bi ( Q2) has a form of the power series 
in the QCD running coupling a8 (Q2). At the up-to-date four-loop level in 
the massless case in the modified minimal subtraction (MS) scheme, for 
three active flavors, n1 = 3, it looks like [36] 
��f (Q2) = 0.3183 a8(Q2) + 0 .3631 a; (Q2) +0.6520 a;( Q2) + 1 .804 a!( Q2) .  

(22) 
The perturbative representation (22) violates analytic properties due to the 
unphysical singularities of a8(Q2) . To resolve the issue, we apply APT. In 
particular, the four-loop APT expansion for the perturbative part �&[(Q2) 
is given by the formal replacement 
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Clearly, at low Q2 a value of as is quite large , questioning the conver­
gence of perturbative QCD series (22) .  The qualitative resemblance of the 
coefficients pattern to the factorial growth did not escape our attention 
although more definite statements, if possible, would require much more 
efforts. This observation allows one to estimate the value of as '"" 1/3 
providing a similar magnitude of three- and four- loop contributions to 
the BSR. To test that, we present in Figures 2 and 3 the relative con­
tributions of separate i-terms in the four-loop expansion in Eq. (22) for 
the PT case and in Eq. (23) for APT. As it is seen from Figure 2, in the 

N1(Q') PT 
0.8 

0.6 ; ... J 
0.4 

i=Z 
0.2 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
Q' (Gev') 

Figure 2 :  The Q2-dependence of the 
relative contributions at the four-loop 
level in the PT approach. 

N1(Q') APT 
0.8 ........ ,_, ·--·--·--·· 

0.6 

0.4 

,_, 
0.2 ·-

J-= ,_, 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
rt (Gev') 

Figure 3: The Q2-dependence of the 
relative contributions of the perturba­
tive expansion terms in Eq. (23) in the 
APT approach. 

region Q2 < 1 GeV2 the dominant contribution to the pQCD correction 
L'.\Bj (  Q2) comes from the four-loop term '"" a! . Moreover, its relative con­
tribution increases with decreasing Q2. In the region Q2 > 2 GeV2 the 
situation changes - the major contribution comes from one- and two-loop 
orders there. Analogous curves for the APT series given by Eq. (23) are 
presented in Figure 3 .  

Figures 2 and 3 demonstrate the essential difference between the PT 
and APT cases, namely, the APT expansion obeys much better conver­
gence than the PT one. In the APT case, the higher order contributions 
are stable at all Q2 values, and the one-loop contribution gives about 70 
3, two-loop - 20 3, three-loop - not exceeds 53, and four-loop - up to 1 
3. 
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One can see that the four-loop PT correction becomes equal to the 
three-loop one at Q2 = 2 GeV2 and noticeably overestimates it (note that 
the slopes of these contributions are quite close in the relatively wide Q2 
region) for Q2 � 1 GeV2 which may be considered as an extra argument 
supporting an asymptotic character of the PT series in this region. In the 
APT case, the contribution of the higher loop corrections is not so large as 
in the PT one. The four-loop order in APT can be important , in principle, 
if the theoretical accuracy to better than 1 3 will be required. 

Now we briefly discuss how the APT applications affect the values of 
the higher-twist coefficients µ�;n in Eq. (21) extracted from Jlab data. 
Previously, a detailed higher-twist analysis of the four-loop expansions in 
powers of 0:8 was performed in [39] . In Figures 4 and 5 we present the 
results of 1- and 3-parametric fits in various orders of the PT and APT. The 
corresponding fit results for higher twist terms µ�;n , extracted in different 
orders of the PT and APT, are given in Table 1 (all numerical results are 
normalized to the corresponding powers of the nucleon mass M) . From 

�����������..-, 
0.16 

0.12 l 
0.08 • •  � 

If :; 
0.04 -�/ // ! 

0 tt : ! 
' I  

-PTNLO 

• ·  · •  PTN'LO 
-···-··PTN'LO 
----- APT 

0.5 1.0 1.5 Q' (Gev') 
2.0 

Figure 4: The one-parametric µ�-n -
fits of the BSR JLab data in various 
(NLO, N2LO, N3LO) orders of the PT 
and the all-order APT expansions. 

0.16 �� 
0.12 

0.08 -YfNLO 

,!. - - - - PTNLO 
0.04 .if i : ; -·-·- ·PT N'LO  

0 'f 1' : f ----- APT 
' ' ! 

0.5 1.0 1.5 

Q'(Gev') 2.0 

Figure 5: The three-parametric 
µ�6';;-fits of the BSR JLab data in var­
io�s

· 
(NLO, N2LO, N3LO) orders of the 

PT and the all-order APT expansions. 

these figures and Table 1 one can see that APT allows one to move down 
up to Q2 � 0 . 1  GeV2 in description of the experimental data [39] . At the 
same time, in the framework of the standard PT the lower border shifts 
up to higher Q2 scales when increasing the order of the PT expansion. 
This is caused by extra unphysical singularities in the higher-loop strong 
coupling. It should be noted that the magnitude of µ�-n / M2 decreases 
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Table 1 :  Results of higher twist extraction from the JLab data on BSR in 
various (NLO, N2LO, N3LO) orders of the PT and all orders of APT. 

Method Q�in' µ� n/M2 µ� n/M4 µ� n/M6 
The best µ� n -fit results 

PT NLO 0.5 -0.028(5) 
PT N2LO 0.66 -0.014(7) 
PT N3LO 0.71 0.006(9) 
APT 0.47 -0.050(4) 

The best µ�6�-fit results 
PT NLO 0.27 -0.03(1) -0.01(1) 0.008(4) 
PT N2LO 0.34 0 .01(2) -0.06(4) 0.04(2) 
PT N3LO 0.47 0.05(4) -0.2(1) 0. 12(6) 
APT 0.08 -0.061(4) 0.009(1) -0.0004(1) 

with an order of the PT and becomes compatible to zero at the four-loop 
level. It is interesting to mention that a similar decreasing effect has been 
found in the analysis of the experimental data for the neutrino-nucleon 
DIS structure function xF3 [37] and for the charged lepton-nucleon DIS 
structure function F2 [38] . 

Consider the application of the FAPT approach by the example of 
the RG-evolution of the non-singlet higher-twist µ�-n(Q2) in Eq. (21) .  
The evolution of the higher-twist terms µ�8n is still unknown. The RG­
evolution of µ�-n( Q2) in the standard PT ���ds 

p-n (Q2) _ p-n (Q2) [as(Q2)] v µ4,PT - µ4,PT O as( Q6) ' 
16 4 v = 'Yo/ (87r,Bo) , 'Yo = 3CF , CF = 3 ·  

(24) 

(25) 

In the framework of FAPT the corresponding expression reads as follows: 

p-n (Q2) _ p-n (Q2) ASl) ( Q2) µ4,APT - µ4,APT 0 ASl) (Q6) . 
(26) 

We present in Table 2 the best fits for µ�-n( Q6) taking into account the 
corresponding RG-evolution with Q6 = 1 GeV2 as a normalization point 
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Table 2: Results of higher twist extraction from the JLab data on BSR 
with inclusion and without inclusion of the RC-evolution of µ�-n( Q2) nor­
malized at Q� = 1 Ge V2 . 

Method 

NNLO APT 
no evolution 

NNLO APT 
with evolution 

Q;,in > GeV2 
0.47 
0 . 17 
0 .10 
0.47 
0 . 17  
0 . 10  

µ� n/M2 
-0.055(3) 
-0.062(4) 
-0.068(4) 
-0.051 (3) 
-0.056(4) 
-0.058(4) 

µ� n/M4 µ� n/M6 
0 0 

0.008(2) 0 
0.010(3) -0.0007(3) 

0 0 
0.0087(4) 0 
0.01 14(6) -0.0005(8) 

and without the RC-evolution. We do not take into account the RG­
evolution in µ�-n for the standard PT calculations and compare with FAPT 
since the only effect of that would be the enhancement of the Landau 
singularities by extra divergencies at Q2 "' A 2, whereas at higher Q2 "' 

1 GeV2 the evolution is negligible with respect to other uncertainties. We 
see from Table 2 that the fit results become more stable with respect 
to Qmin variations, which reduces the theoretical uncertainty of the BSR 
analysis. 

4 Summary 
To summarize, APT and FAPT are the closed theoretical schemes with­
out unphysical singularities and additional phenomenological parameters 
which allow one to combine RC-invariance, Q2-analyticity, compatibility 
with linear integral transformations and essentially incorporate nonper­
turbative structures. The APT provides a natural way for the coupling 
constant and related quantities. These properties of the coupling constant 
are the universal loop-independent infrared limit and weak dependence on 
the number of loops. At the same time, FAPT provides an effective tool 
to apply the Analytic approach for RC improved perturbative amplitudes. 
This approaches are used in many applications. In particular, in this pa­
per we consider the application of APT and FAPT to the RC-evolution of 
nonsinglet structure functions and Bjorken sum rule higher-twist analysis 
at the scale Q2 "' A 2 considered. 
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The singularity-free, finite couplings A,, ( Q2) ,  2l,, ( s) appear in 
APT /FAPT as analytic images of the standard QCD coupling powers 
o:� ( Q2) in the Euclidean and Minkowski domains, respectively. In this pa­
per, we presented the theoretical background, used in a package "FAPT" [29] 
based on the system Mathematica for QCD calculations in the framework 
of APT /FAPT, which are needed to compute these couplings up to N3LO 
of the RG running. We hope that this will expand the use of these ap­
proaches. 
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