The Spin Structure of Proton in Electroweak Model

E.S.Timoshin,S.I.Timoshin
Gomel State University
Gomel State Technical University

1 Introduction

The spin of nucleon can to expess about a contributions its constituents

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L_{q}+L_{g}
$$

where $\Delta \Sigma$ and Δg are the contributions polarization quarks and gluons respectively; L_{q}, L_{g} are the orbital angular moments quarks and gluons (see (1,2]) for recent reviews).

The last data COMPASS [1] and HERMES [3] give for $\Delta \Sigma$ values 0.35 and 0.33 , i.e. the total contributions of the quarks is regarding small. The polarization of the strange quarks from COMPASS [4] is order -8%. However recent measurements HERMES [5] indicate that it consistent with zero.

The measurements the gluon polarization Δg are going now in experiments COMPASS, HERMES, PHENIX and STAR. Their results have until obvious character about value Δg. However data these experiments now disfavor a large positive value of the gluon polarization in the proton $[6,7,8,9]$.

The determination the magnitude of the orbital angular moments L_{q}, L_{g} is possible in exclusive processes, i.g. by measurements in the deep virtual Compton scattering.

For solution problem of the nucleon spin are require further precision measurements all his components.

In present talk we propose an approach for the determination the quark contributions in proton spin in deep inelastic scattering (DIS) polarized electrons or positrons on polarized protons

$$
\begin{equation*}
e^{ \pm}+P \rightarrow e^{ \pm}+X \tag{1}
\end{equation*}
$$

in electroweak model, i. e. together with the contribution neutral weak current.

A such analysis can to done in $e^{ \pm} P$ polarized DIS, which might be done at HERA (DESY) in the future [10].

2 The polarized ep-DIS in electroweak model

The cross sections of processes (1) were obtained in form

$$
\begin{equation*}
\sigma=\frac{4 \pi \alpha^{2} x S}{Q^{4}}\left[y^{+} F_{1}-\frac{1}{2} P_{e} y^{-} F_{3}+P_{N}\left(y^{+} g_{5}-P_{e} y^{-} g_{1}\right)\right] . \tag{2}
\end{equation*}
$$

Here

$$
\begin{gathered}
\sigma=\frac{d^{2} \sigma}{d x d y}, Q^{2}=-q^{2}=-\left(k-k_{1}\right)^{2}, x=\frac{Q^{2}}{2 P \cdot q} \\
y=\frac{P \cdot q}{P \cdot k}, S=2 P \cdot k, y^{ \pm}=1 \pm(1-y)^{2}
\end{gathered}
$$

$k\left(k_{1}\right)$ and P are the 4 -momentums of incoming (outcoming) lepton and proton respectively, $P_{e}=-1(+1)$ for electron and proton (positron), P_{N} is degree longitudinal polarization of proton.

The F_{1}, F_{3} and g_{1}, g_{5} are unpolarized and polarized structure functions (SF) of proton

$$
\begin{gather*}
F_{1}=F_{1}^{\gamma}+\eta_{\gamma Z} F_{1}^{\gamma Z}+\eta_{Z} F_{1}^{Z} \\
F_{3}=\eta_{\gamma Z} F_{3}^{\gamma Z}+\eta_{Z} F_{3}^{Z} \tag{3}\\
g_{1}=g_{1}^{\gamma}+\eta_{\gamma Z} g_{1}^{\gamma Z}+\eta_{Z} g_{1}^{Z} \\
g_{5}=\eta_{\gamma Z} g_{5}^{\gamma Z}+\eta_{Z} g_{5}^{Z}
\end{gather*}
$$

where

$$
\eta_{\gamma Z}=\frac{G m_{Z}^{2}\left(g_{V}+g_{A}\right)}{2 \sqrt{2} \pi \alpha} \frac{Q^{2}}{Q^{2}+m_{Z}^{2}}, \eta_{Z}=\eta_{\gamma Z}^{2}
$$

G is Fermi constant, m_{Z} is mass of Z-bozon.
The $g_{V}=I_{3 q}-2 e_{q}^{2} \sin ^{2} \theta_{w}$ and $g_{A}=I_{3 q}$ are the vector and the axial vector coupling constants respectively. In these quantities

$$
I_{3 q}=\left\{\begin{aligned}
\frac{1}{2} & \text { for } q=u, c, t \\
-\frac{1}{2} & \text { for } q=d, s, b
\end{aligned}\right.
$$

e_{q} is the charge of quark, θ_{w} is Weinberg angle.
For the SF obtained the following expressions in the quark - parton model (QPM) [11]:

$$
\begin{gather*}
F_{1}^{Z}(x)=\frac{1}{2} \sum_{q}\left(g_{V}^{2}+g_{A}^{2}\right)_{q}[q(x)+\bar{q}(x)], \\
F_{3}^{Z}(x)=2 \sum_{q}\left(g_{V}^{2} g_{A}^{2}\right)_{q}[q(x)-\bar{q}(x)], \\
g_{1}^{Z}(x)=\frac{1}{2} \sum_{q}\left(g_{V}^{2}+g_{A}^{2}\right)_{q}[\Delta q(x)+\Delta \bar{q}(x)], \\
g_{5}^{Z}(x)=\sum_{q}\left(g_{V} g_{A}\right)_{q}[\Delta q(x)-\Delta \bar{q}(x)], \\
F_{1}^{\gamma Z}(x)=\sum_{q} e_{q}\left(g_{V}\right)_{q}[q(x)+\bar{q}(x)], \tag{4}\\
F_{3}^{\gamma Z}(x)=2 \sum_{q} e_{q}\left(g_{A}\right)_{q}[q(x)-\bar{q}(x)], \\
g_{1}^{\gamma Z}(x)=\sum_{q} e_{q}\left(g_{V}\right)_{q}[\Delta q(x)+\Delta \bar{q}(x)], \\
g_{5}^{\gamma Z}(x)=\sum_{q} e_{q}\left(g_{A}\right)_{q}[\Delta q(x)-\Delta \bar{q}(x)], \\
F_{1}^{\gamma}(x)=\frac{1}{2} \sum_{q} e_{q}^{2}[q(x)+\bar{q}(x)], \\
g_{1}^{\gamma}(x)=\frac{1}{2} \sum_{q} e_{q}^{2}[\Delta q(x)+\Delta \bar{q}(x)],
\end{gather*}
$$

The polarization asymmetries are the following combinations of cross sections (2):

$$
\begin{equation*}
A_{ \pm}=\frac{\left(\sigma^{\lfloor\uparrow} \pm \sigma^{\uparrow \uparrow}\right)-\left(\sigma^{\downarrow \downarrow} \pm \sigma^{\uparrow \downarrow}\right)}{\left(\sigma^{\lfloor\uparrow} \pm \sigma^{\uparrow \uparrow}\right)+\left(\sigma^{\lfloor\downarrow} \pm \sigma^{\uparrow \downarrow}\right)}, A_{e^{-}, e^{+}}=\frac{\sigma^{\lfloor\downarrow}, \uparrow \uparrow}{}-\sigma^{\downarrow \downarrow, \uparrow \downarrow} . \tag{5}
\end{equation*}
$$

The first arrow notes the direction of electron or positron spin and the second - of proton spin: $\uparrow\left(P_{N}=+1\right), \downarrow\left(P_{N}=-1\right)$.

The asymmetries (5) in terms of SF are

$$
\begin{equation*}
A_{e^{-}, e^{+}}=\frac{y^{+} g_{5} \pm y^{-} g_{1}}{y^{+} F_{1} \pm \frac{y^{-}}{2} F_{3}}, A_{+}=\frac{g_{5}}{F_{1}}, A_{-}=\frac{2 g_{1}}{F_{3}} \tag{6}
\end{equation*}
$$

With help the asymmetries (5), (6) can to obtain the polarized SF g_{1} and g_{5} as the data for SF F_{1}, F_{3} are know from unpolarized experiments at HERA.

3 The spin structure of proton

An analysis the spin structure of proton we carry in the approach with the first moments of polarized $\mathrm{SF} g_{1}, g_{5}$:

$$
\Gamma_{1,5}=\int_{0}^{1} g_{1,5}(x) d x
$$

From (3),(4) for these moments we obtain restricting the three flavors (u, d, s)

$$
\begin{gather*}
\Gamma_{1}=a_{u}(\Delta u+\Delta \bar{u})+a_{d}[(\Delta d+\Delta \bar{d})+(\Delta s+\Delta \bar{s}] \tag{7}\\
\Gamma_{5}=b_{u} \Delta u_{V}+b_{d} \Delta d_{V} \tag{8}
\end{gather*}
$$

Here

$$
\begin{gathered}
a_{u}=\frac{2}{9}+\frac{2}{3} \eta_{\gamma} Z g_{V, u}+\frac{1}{2} \eta_{Z}\left(g_{V}^{2}+g_{A}^{2}\right)_{u} \\
a_{d}=\frac{1}{18}-\frac{1}{3} \eta_{\gamma Z} g_{V(d, s)}+\frac{1}{2} \eta_{Z}\left(g_{V}^{2}+g_{A}^{2}\right)_{d, s} \\
b_{u}=\frac{2}{3} \eta_{\gamma Z} g_{A, u}+\eta_{Z}\left(g_{V} g_{A}\right)_{u} \\
b_{d}=-\frac{1}{3} \eta_{\gamma Z} g_{A, d}+\eta_{Z}\left(g_{V} g_{A}\right)_{d} \\
g_{V, u}=\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w}, g_{A, u}=\frac{1}{2} \\
g_{V(d, s)}=-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{w}, g_{A(d, s)}=-\frac{1}{2} \\
\Delta q(\Delta \bar{q})=\int_{0}^{1} \Delta q(x)(\Delta \bar{q}(x)) d x, q=u, d, s
\end{gathered}
$$

$$
\Delta u_{V}=\Delta u-\Delta \bar{u}, \Delta d_{V}=\Delta d-\Delta \bar{d}
$$

For determination from (7) the contributions the individual quark flavors can to use the isovector axial charge $a_{3}\left(a_{3}=1.2695 \pm 0.0029\right)$ and the octet axial charge $a_{8}\left(a_{8}=0.585 \pm 0.025\right)$, that are measured in neutron and hyperon beta-decays respectively. These measurable quantities in QPM are

$$
\begin{gather*}
a_{3}=(\Delta u+\Delta \bar{u})-(\Delta d+\Delta \bar{d}) \tag{9}\\
a_{8}=(\Delta u+\Delta \bar{u})+(\Delta d+\Delta \bar{d})-2(\Delta s+\Delta \bar{s}) \tag{10}
\end{gather*}
$$

Then from these expressions and (7) obtain the contributions u, d, s flavours in proton spin

$$
\begin{gather*}
\Delta u+\Delta \bar{u}=\frac{\frac{2 \Gamma_{1}}{a_{d}}+a_{8}+3 a_{3}}{2\left(a_{u}+2 a_{d}\right)}, \\
\Delta d+\Delta \bar{d}=\frac{2 \Gamma_{1}-2 a_{u}+a_{d}\left(a_{8}-a_{3}\right)}{2\left(a_{u}+2 a_{d}\right)}, \tag{11}\\
\Delta s+\Delta \bar{s}=\frac{\left(1-\frac{a_{8}}{a_{3}}\right) a_{u}+a_{d}-2 a_{u}+\frac{2 \Gamma_{1}}{a_{3}}}{2\left(a_{u}+2 a_{d}\right)} .
\end{gather*}
$$

The data HERMES [12] rather favour a symmetric sea $\Delta \bar{u}=\Delta \bar{d}$. In this case

$$
\begin{equation*}
a_{3}=\Delta u_{V}-\Delta d_{V} \tag{12}
\end{equation*}
$$

Therefore from (8) and (12) we obtain separately the contributions of the valence quarks

$$
\begin{aligned}
& \Delta u_{V}=\frac{\Gamma_{5}+b_{d} a_{3}}{b_{u}+b_{d}} \\
& \Delta d_{V}=\frac{\Gamma_{5}-b_{u} a_{3}}{b_{u}+b_{d}}
\end{aligned}
$$

So, the quark contributions in the proton spin determined in frame electroweak theary for processes (1) at HERA collider.

4 Conclusion

Here an approach has proposed for determination the contributions of quark flavours (u, d, s) and valence quarks ($\Delta u_{V}, \Delta d_{V}$) in proton spin from data polarization experiments (1) at HERA. With this goal we use the first moments of polarized SF g_{1}, g_{5} the processes (1) taking into account the contributions from weak interaction.

The polarized SF g_{1}, g_{5} can to extract from measurable asymmetries $A_{ \pm}, A_{e^{-}, e^{+}}$.

References

[1] Forte S., Goto Y. ArXiv: hep-ph/0609127.
[2] Boer D., Hasch D.,Mallot G. ArXiv:0707.1259 [hep-ph].
[3] HERMES Collaboration. ArXiv:hep-ph/0609039.
[4] COMPASS Collaboration. ArXiv:hep-ph/0609038.
[5] HERMES Collaboration. ArXiv:hep-ph/0601006.
[6] Ellis J. ArXiv:hep-ph/0701049.
[7] Surrow B. ArXiv:0705.3483 [hep-ex].
[8] PHENIX Collaboration. ArXiv:0704.3599 [hep-ex].
[9] STAR Collaboration. ArXiv:0706.2388 [hep-ex].
[10] Bourrely C., Soffer J. ArXiv:hep-ph/0101195.
[11] Anselmino M., Efremov A., Leader E. Phys.Rep.261,1 (1995).
[12] Mallot G.K. ArXiv: hep-ex /0501044.

