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Abstract

The new relativistic Coulomb-like threshold S- and P-factors in 
quantum chromodynamics are presented. Consideration is given within 
the framework of quasipotential approach in quantum field theory formu
lated in the relativistic configurational representation in the case of two 
particles of unequal masses.

1 Introduction
At the description of quark-antiquark systems close to threshold we can not 

cut off the perturbative series even if the expansion parameter, the QCD cou
pling constant a s , is small [1]. The problem is well known from QED [2]. 
The reason consist in that the real expansion parameter in the threshold region 
is a / v , where v  =  ^/1 — Am 2 / s  is a quark velocity, and m  is a quark mass. 
Obviously, it becomes to be singular, when the velocity v —> 0. To obtain 
meaningful result these threshold singularities of the form (a /v ) n  have to be 
summarized. In the nonrelativistic of case for the Coulomb interaction

V (r ) = —a / r  (1)

this resummation is realized the known S-factor Gamov-Sommerfeld-Sa- 
kharov [3, 4, 5]

Q / A _  -^nr^nr) yr / \ _  a  /Л,
Snr{Vnr) — 1 Г V / M ’ ^nr(^nr) — , (2)

1 -  exp [-A nr(v n r)J ^nr
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which is related to the wave function of the continuous spectrum at the origin 
by |^ (0 ) |2 . Here 2u nr is the relative velocity of two nonrelativistic particles. 
The corresponding nonrelativistic expression can also be obtained for higher C 
states (see, e.g„ [6]).

In the relativistic theory the nonrelativistic approximation needs to be mod
ified. For the first time the relativistic modification of the S-factor (2) in QCD 
in the case of two particles of equal masses (mi =  m2 =  m) was executed 
in [7] and it consisted in the change ?A.r - > v. This factor was used for the 
description of effects close to the threshold of pair production in the processes 
e +e~ —> tt and e+ e~ —> W + W ~. Just the same form of the S-factor for the 
interaction of two particles of equal masses was later suggested in [8]. Another 
form of the relativistic generalization of the S-factor also in the case of two 
particles of equal masses was obtained in [9]. The relativistic S-factor for two 
particles of arbitrary masses (mi m 2) was presented in [10]. This factor was 
derived within the framework of relativistic quantum mechanics on the basis of 
the Schrodinger equation.

The new method to relativistic generalization of the S-factor in the case of 
two particles of equal masses was developed by Milton and Solovtsov in [11]. 
Their the method is based on the relativistic quasipotential (RQP) approach 
proposed by Logunov and Tavkhelidze [12] in the form suggested by Kady- 
shevsky [13]. In the method developed by them, the possibility of transfor
mation of quasipotential (QP) equation from momentum space into relativis
tic configurational representation in the case of two particles of equal masses 
(see [14]) has been used also. Moreover, it is important the potential (1) that 
used by them possesses the QCD-like behaviour (see [15]). The solution con
taining arbitrary functions of r  with period i, the so-called the г-periodic con
stants, with the same potential was investigated in [16]. However, the using of 
such solution is suitable for the spectral problems only.

Thus, in [11] a new step to application of the QP approach in QCD was 
made. This approach gives the following expression for the relativistic S-factor:

=  1 =  (3)l - e x p [ - X ( x ) ]  sm hy

where x  is the rapidity related to the total c. m. energy of interacting particles, 
y/s, by 2m cosh x  =  лА- The function X (%) in Eq. (3) can be expressed in 
terms of v  as X ( x )  = 77 o V l -  v2 /v . The method proposed by them in [11] 
has been applied in [17] successfully to get the following expression for the
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relativistic F-factor (for £ =  1 state) in the case of two particles of equal masses:

/  o? \
Ц  +  р т г  S (x ). (4)
\  4 sinh x J

In that paper, a new model expression for R{s), in which threshold singulari
ties were summarized to the main potential contribution, was suggested as well. 
The generalization of the relativistic S- and P-factors for arbitrary £ states in 
the case of two particles of equal masses was executed in [18, 19]. Applica
tions of the factor (3) for describing some hadronic processes can be found 
in [20, 21, 22]. Recently, the relativistic S-factor (3) has been applied in [23] to 
reanalyze the mass limits obtained for magnetic monopoles which might have 
been produced at the Fermilab Tevatron.

We should like to remind that the resummation factors appears in the 
parametrization of the imaginary part of the quark current correlator, the Drell 
ratio R(s), which can be approximated in terms of the Bethe-Salpeter (BS) 
amplitude of two charged particles XBS(Z ) at x =  0 (see [24]). The nonrel- 
ativistic replacement of this amplitude by the wave function, which obeys the 
Schrodinger equation with the Coulomb potential (1), gives the formula (2) with 
a substitution a  -> 4 a s /3  for QCD. The possibility of using the QP approach 
for our task is based on the fact that the QP wave function in the momentum 
space, Фв (р), is defined as the BS amplitude is taken at x  =  0 by the relation 

XBSU  =  0) =
1

(2тг)3 (5)

where dflp =  (m dp)/E p  is the relativistic three-dimensional volume element 
in the Lobachevsky space realized on the hyperboloid E 2 — p 2 =  m 2 .

The purpose of this paper is to generalize the previous study started in [11] 
to the case of the interaction of two particles of unequal masses (mi m2). 
The method is based on the RQP approach in quantum field theory proposed by 
Kadyshevsky in [13] formulated in the relativistic configuration representation 
for the interaction of two relativistic particles of unequal masses [25]. Within 
the framework of this approach we derive the new relativistic S- and P-factors 
and analyze their behavior in the following cases: the nonrelativistic and rel
ativistic cases, the case of equal masses, and the ultrarelativistic case. In the 
following we will use the system of units c =  h =  1.
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2 The integral form of quasipotential equation in 
the case of two particles of unequal masses

The basis of our consideration is QP equation into the momentum space con
structed in [25] for the RQP wave function Фд-(р') of two relativistic particles 
of unequal masses. This equation is given by

( 2 ^  -  2EP>) Фд-(р') =  [  dQk , V  ( р ' , к '; E?) Фд-(к ') , ( 6 )

where dClk ’ = m ' dk1 /  E k ’ is the relativistic three-dimensional volume ele
ment in the Lobachevsky space, E k ' = V m '2 +  k ' 2 , m' = у /т к т ъ  and 

= m i m i/(m i + is the usual reduced mass.
Eq. (6) represents a relativistic generalization of the Lippmann-Schwinger 

equation in the spirit of the Lobachevsky geometry, which is realized on the 
upper half of the mass hyperboloid E k , — k ' 2 =  m '2 . This equation describes 
the scattering over the quasipotential V  (р', к'; Е ^) of an effective relativistic 
particle having mass m' and a relative 3-momentum k', emerging instead of the 
system of two particles and carrying the total c. m. energy of the interacting 
particles, y/s, proportional to the energy E k > of one effective relativistic particle 
of mass m' (see [25, 26]):

y/s = у /m i2 +  к 2 +  A/  m 2
2 +  к 2 = — E k’ . (J)

The proper Lorentz transformations means a translation in the Lobachevsky 
space. The role of the plane waves corresponding to these translations are 
played by the following functions:

m ' J

where the module of the radius-vector, r, (r =  r  n , |n | =  1) is a relativistic 
invariant [26]. The functions (8) correspond to the principal series of unitary 
representations of the Lorentz group and they obey the conditions of complete
ness and orthogonality (see [26]).

We note that Eq. (6) differs from of the QP equation considered in [27] by 
means of introduction into it of the relativistic reduced mass. However, in [27] 
was shown that it is possible to use the different expressions for the relativis
tic reduced mass by means of the choice of functional relationship between
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the relative 3-momentum к  and the relativistic relative velocity of interacting 
particles, v, connected with their the total energy, ^ s ,  by relation (see, for 
instance, [9, 10])

s -  (тщ +  m 2 )2

V S — (ni] — m2)2

s — (mi +  m 2 )2 \  1

s — (mi — m 2 )2 / (9)

In particular, if the dependence between the energy of the relative motion and 
the relativistic relative velocity v is given by expression (see [25, 26]) 

k ^ =  /  1 Л  

2/r \У 1  — v2 /
(10)

this together with relation (9) gives the expression (7). Such the choice of func
tional relationship has allowed to enter the concept of an effective relativistic 
particle [25, 26]. Notice that the relative 3-momentum k' of an effective rel
ativistic particle, according to the expression (10), is invariant of the Loretz 
transformations.

For a spherically symmetric potential the application of Shapiro transfor
mations (or ^-transformations [25, 26])

1 /  f l l )

W )  =  J  * f ( p ' , r ) ^ ( r ) ,

to Eq. (6) it has lead us to the equation, which is the integral form of the rela
tivistic Schrodinger equation in the configurational representation:

— [  d<lP (2Eq -  2 ^ )  C (p, p) /  dp' f ( p , р') фд(р') =
(27Г) J  J  (12)

^ V ^ E g ^ p ) .  
m'

Here the right-hand side is already local in the configuration representation, the 
transform of the potential, V (p \E qi), is given in terms of the same relativistic
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plane waves and where we introduced the following notation:

q' =  m 'q , p' =  m'p , q =  sinh(x9 ) nQ , p = sinh(xP ) np ,

[nJ =  |np | =  1, p =  m 'r , p' =  m'r' , p = \ p \ ,  dr1 =  m' 3d p ',

dClpi = m '3dClp , dClp = , E ^ = m 'E q , Ep> = m'Ep , 
■̂ p

(13)

E q = , Ep =  У 1 + Р 2 , V (r ; E ^) = m 'V (p ; Eq) ,

£ ( p ',r )  =  £ (p ,p ) ,Vv(r ) =  ^9 (р) Л Й Р ') = Т ' ^ ( p ) .
By using the expansions

P P \
PP /  ’

C (p ,p ) =  ^ ( 2 £ +  1) ie pe (p, cosh x P) Pt 
e=o

^ р ) = £ ( г е + 1 ) і <‘* ^ р , Р С £
P \  QPe=o r  '

and also formula [ 14] pe {p , cosh x) =

Eq. (12) transformed to the form

(—1 / (s in h y / /  d V / s in p x  
p^+9 y d c o s h / /  \  sinh у

, (sinh х ')И + 2  (— 1 / +1  ,, /  d Adx  ----------- й+іі---------- (2  c o s h  *  ”  2  c o s h  x  ( л------x

p ^+ 1> \d c o s h x  J

( s i n p x ' \ (  d V  1 7  p 's in p V  , (15)
( • к / J I j  u / J  ’ и f I dp ( /Ŵ +l) ^P^P 1
\s m h x  /  \a c o s h x  /  sm hx J

=  2p  V (p ;E q ) p e (p ,x )  
m ' p

Here
(-o i^+ t) -  H l  +  1 +  ^P) 
{ P ) Цгр) (16)

is the generalized power [14], T(z) is the gamma-function, P"(z) is a Legen
dre function of the first kind, and the function p^(p,coshx) is the solution of 
Eq. (12) in the case when the interaction is switched off, V ( p ; E q ) =  0; x ' and x  
are the rapidities which are related to Ep  and E q as Ep  = cosh x ' ,E q =  cosh y.

Thus, Eq. (15) differs from the corresponding equation in the case of two 
particles of equal masses (see [19]) only by the factor 2 p /m  turning into 1 at
m t = m 2.

205



3 Relativistic threshold S- and F-factors
We note that the applying of ^-transformation (11) to the Coulomb inter

action (1) gives the potential in momentum space У (A) ~  (хд sinh У дГ ' , 
where the relative rapidity уд corresponds to △ =  p '(—)k' and is defined 
in terms of the square of the momentum transfer by Q2 - ( р ' -  V)2 =  
2(COS1IX A  -  1). For large Q2 the potential V(A) behaves as (Q2 ^ ^ 2 )” 1, 
which reproduces the principal behaviour of the QCD potential proportional to 
<5S (Q2) /Q 2 with ds(Q 2 ) being the QCD running coupling. This property of 
the potential (1), its QCD-like behaviour, was noted in [15].

We will seek a solution of RQP equation (15) with the potential (1) in the 
form (see [11,28, 19])

(17)

where the ^-integration is performed in the complex plane over a contour with 
end points a -  and a +  (see Fig. 1). Substituting (17) into (15) we arrive at the 
equation

d cosh £

l г
(sinh C)m i  (2 cosh x ~

d
d cosh £ (18)

2 a  p. 
m' p

t “+
H ( P 2 +  F )  [  dC,eipC- R t t t ,X )  ■
n=l У

Eq. (18) at f =  0, when we integrate it by parts, has lead us to the equation

(ІГ  "1 7ry LL
— (coshx  -  coshC) -------=  0 (19)
a ; L J m

with the boundary condition

ev <  (cosh x -  cosh 0  R o t t  , =  0 . (20)
I C = Ct-
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-х+2лі • • х +2пі

<;-plane

а_ ]_______ тс_________ X

-Х-2яі • • х-2пі

• /-4пі

Figure 1. Contour of integration in Eq. (17) and singularities of the func
tion (21) in the complex £-plane

As a result the solution of Eq. (19) is

p? r  pC — p  X -i — 1 + i A^o(C , x) =  G )(x)^ 7 - ^ 7  [ e< -  ] 
m ' sinhx

(21)

where Co(x) is a n  arbitrary function of x- The branch points of the function 
(21) are ± x  +  2тгпг, n =  0 , ± 1 ,. . .  (see Fig. 1). The contour of integration 
must not intersect cuts which we take from —00 +  2тгпг to ± y  +  2тгт. In 
the case when the interaction vanishes, a —> 0, the solution ^ ( p , x)  should 
reproduce the known free wave function p p t{p , cosh %):

, , , , sinfpx — ТгС/2)
In n p t (p ,x )  =  m ( p ,c o s h x ) ------> ------- —--------- . (22)a-»O p“»oo Sinh X

Taking into account these remarks and the boundary condition (20), we take: 
a -  = —R  — i s , a +  = —R  +  zE,Re£ =  + R ,Im £  =  ±7г with R -A 
+00 , E —A +0 (Fig. 1). It is also convenient for finding a connection to an 
integral representation of the hypergeometric function. Substituting the solu
tion (21) into (17) at ( =  0 and performing ^-integration in the complex plane 
along a contour with end points o_ and o +  (in the same way as in [ 11 ,28, 19]) 
we obtain the resulting solution for the RQP partial wave function p ^ p , \  ) in 
the form

, x n  ( x2  P sinh(7T p) 
Po\P , x) =  w ) ------ Tn------

giip+l'jx 
dx-----------—

(e-1 +  ex )2

+  e x 
ex  + ex

1+гД

, (23)
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where the function p ^  is determined in Eq. (16). The solution (23) does not 
contain the z-periodic constant and can also be represented in terms of hyperge- 
ometrical function as

, x) =  - Щ х ^ - р ^  eip x + lA x  гр- 2; 1 -  . (24)

The normalization constant No(x) in  Eq. (24) can be obtained from the condi
tion (22) at £ =  0.

The BS amplitude XBS(^ =  0) is associated with the RQP wave function in 
the momentum space, Фд (р), by the relation (5). Taking into account the trans
formations (11) and notations (13), the relationship of the BS amplitude with 
the RQP wave function, is XBSU' =  0) =  ^ q {p)\p = i. The generalized 
power (16) in the solution (17) vanishes at p = i for all £ 0. Thus, the ex
pansion (14) for the wave function ^ q (p) contains only s-wave (£ =  0). Hence, 
by using relations (24) and (22) at £ =  0 we can calculate |?/g (z)|2 , which has 
lead us to the following expression for the relativistic S-factor in the case of 
two particles of unequal masses:

c  / x i- <MP,X)Suneq  ( x )
P

u n eq (x )

2тг a p 
uneq(X ) ; : Г 

т ' s m h x

1 -  exp [—X u n e q (x)] ’ (25)

where x is the rapidity which is related to the 0 s  a s ---- cosh x =  yfs- 
P

Eq. (18) at £ =  1, when we integrate it by parts, has lead us to the equation

d r 1 d 
d^ I sinh /  d /

[(sinh C)2 (cosh x -  cosh 0  ) ]  } -
I d /  \  sinh /  / J J

(26)
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with the boundary conditions
(coshx -  cosh 0  , x)| = 0 ,

K=a_
- e tpc , г cosh C ,  COShC ..Д 1(С,Х) +LsinhC

+  smh^  ~ ■dQ \ sinh Q =  0 , (27)
'  ■ < 7 57 [(s i n h  O 2 (c o s h *  ~ c o s h 0  57 ( ls in h C d < l?  d ( \  smh£

- ^ 4 ^ ( с х т Г + = о.

Substituting the solution of Eq. (26) into (17) at £ =  1 and performing A  integration in the complex plane along a contour with end points a _  and a +  (in the same way as in case s-wave) we obtain the resulting solution for the RQP partial wave function (p , x) in the form
r m  ^ P ^ ^ P )

PAP.X) = -C^ -----
Аір+2)х^ 7 ----------7(ex  +  ex )4 ex  +  e x 

ex  +  ex -2+iA , (28)
where the function p ^  is determined in (16). The solution (28) does not contain the г-periodic constant and can also be represented in terms of hypergeometrical function as =  M ( x ) ( ~ A ( 2 )et p x + M x F ( 2 - i 4 , 2 - A ; 4 ; l  -  e” 2*) . (29)The normalization constant M  (x) in Eq. (29) can be obtained (also as in case s-  wave) from the condition (22) at I  =  1. By using Eq. (29) and the condition (22) at £ =  1, we find the following expression for the relativistic F-factor, which corresponds p-wave (see [17]), in the case of two particles of unequal masses:

-̂ >uneq(x) Um
p-vi

where △* 1г exp
3 д ,  /sinh x  \ PA  d \ V  d p ) -  1

2 =  (1 +  Л 2) S u n eq( x ) ,
is finite difference derivative [14, 26].

(30)
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The function X uneq(x) and parameter A  in Eqs. (21), (25) and (30) can be 
expressed in terms of the “velocity” и determined by the relation

/ 1
и = \ 1 ------ =— , s =  s — (mi — m 2 )2 , (31)

V s

in the form

(32) 
u 2u

The square of relative 3-momentum k ' for an effective relativistic particle, 
emerging instead of the system of two particles, is connected with the relative 
relativistic velocity of interacting particles, v, by the expression (10). Thence, 
taking into consideration the determination (31) and relation (9), we find

к '2 =  (д',J 2 « J 2 , (33)
1 +  m

where д',.е1 =  2 д is the relativistic reduced mass, and 

is the relative velocity of an effective relativistic particle of mass m'. This result
is found to be in full agreement with the physical meaning of Eq. (6).

Thus, in terms of relative velocity of an effective relativistic particle (34), 
the S'-factor (25) and F-factor (30) are given by expressions

Q ( ’ \ — ^ u n e q ( U rel) у  / ' \ _  a  / т е з
J  im e q H (e l/  ~  i Г v  I ' л  ш іесД^геІ/ ~1 - e x p  |~ A u n e q (tzre l)] u rel

The factors in Eqs. (35) and (36) only formally have the same forms, as 
their the nonrelativistic analogies. However, these the factors have an obviously 
relativistic nature since as the argument r  — |r | in the Coulomb potential (1) 
and the relativistic relative velocity of interacting particles, v, (see [26]) both 
are relativistic invariants. Hence the relative velocity of an effective relativistic 
particle (34), according to Eqs. (10) and (33), possesses this property as well.
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Figure 2. Behavior of the S-factor 
at different values of a  (the num
bers at the curves).

Figure 3. Behavior of the P-factor 
at different values of a (the num
bers at the curves).

The relativistic threshold factors (35) and (36) have the following important 
properties:

• In the nonrelativistic limit, и 1, they reproduces the well-known non- 
relativistic results.

• In the relativistic limit, и —> 1, both factors (35) and (36) go to unity.
• In the case of equal masses they coincides with S-factor (3) and P- 

factor (4).
• In the uitrarelativistic limit, as it was argued in [29], the bound state spec

trum vanishes since mass of an effective relativistic particle m' —> 0. This fea
ture reflects an essential difference between potential models and quantum field 
theory where an additional dimensional parameter appears. One can conclude 
that within the framework of a potential model, the S- and P-factors which 
correspond to the continuous spectrum should go to unity in the limit m ' —> 0. 
Thus, in contrast to the nonrelativistic case, the relativistic threshold the S- and 
P-factors in Eqs. (35) and (36), reproduces both the known nonrelativistic and 
the expected uitrarelativistic limits.

To illustrate differences between the new relativistic S- and P-factors in 
Eqs. (35) and (36) and their nonrelativistic analogies in more detail, in Figs. 2 
and 3 we plot the behavior of these factors as functions of и at different values 
of the parameter a  (the numbers at the curves). The solid lines correspond to 
the relativistic S- and P-factors in Eqs. (35) and (36); the dashed lines to the
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nonrelativistic S-factor (2) and F-factor (see [6])

with a substitution unr —> u. From these figures one can see that in the region of 
nonrelativistic values of и, и < 0.2, where the influence of the S- and F-factors 
are big, the differences between (35) and (36) and their nonrelativistic analogies 
are practically absent. Hov ever, when a  increases, the nonrelativistic expres
sions gives a less suitable result in the region of large values u, in particular, as 
и —> 1.

4 Conclusion
The new relativistic threshold S- and P-factors [(35) and (36)] for the in

teraction of two relativistic particles of unequal masses were obtained. For 
this aim the RQP equation in relativistic configuration representation [25] with 
the Coulomb potential for the interaction of two relativistic particles of un
equal masses was used. The new relativistic threshold factors obtained here 
reproduce both the known nonrelativistic and expected ultrarelativistic limits 
and correspond to the QCD-like Coulomb potential. The Coulomb potential 
only formally has the same form as the nonrelativistic potential but differs 
in the relativistic configuration representation since its behavior corresponds 
to the quark-antiquark potential Vqq ~  d s (Q2 ) /Q 2 with the invariant charge 
d s (Q2 ) ~  1 / ln Q 2 . So, the principal effect coming from the running of the 
QCD coupling is accumulated.

The new S- and F - factors are coincided in form with their nonrelativistic 
analogies. However, the role of the parameter of velocity is played not by the 
relativistic relative velocity of interacting particles, v, but by the relative veloc
ity (34) of an effective relativistic particle emerging instead of the system of 
two particles. It was shown that there are a differences between the expressions 
(35) and (36) the obtained here and their nonrelativistic analogies. As the new 
relativistic threshold factors (35) and (36) were obtained within the framework 
of completely covariant method, one can expect that these factors takes into 
account more adequately relativistic nature of interaction.

Acknowledgments
It is a pleasure for the authors to thank Yu.S. Vemov and M.N. Mnat- 

sakanova for support and useful discussions and also A.E. Dorokhov, I.S. Sa-

212



stsunkevich, V.V. Skalozub and A.V. Kiselev for their comments in this work 
and useful discussions of the obtained results.

This work was supported in part by BelRFBR-JINR grant No. F08D-001, 
the Belarus State Program of Basic Research “Fields and particles”, and RFBR 
grant No. 08-01-00686.

Our work is denoted to the memory of our dear friend and colleague, Igor 
Solovtsov.

References
[1] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975); Phys. 

Rev. D 12, 1404(1975).

[2] J. Schwinger, Particales, Sources, and Fields II, Ch. 5-4 (1973).

[3] G. Gamov, Zeit. Phys. 51, 204 (1928).

[4] A. Sommerfeld, Atombau und Spektrallinien II, Vieweg, Braunschweig, 
(1939).

[5] A. D. Sakharov, Sov. Phys. JETP 18, 631 (1948).

[6] K. Adel and F. J. Yndurain, Phys. Rev. D 52, 6577 (1995).

[7] V. S. Fadin, V. A. Khoze, Yad. Fiz. 48, 487 (1988); V. S. Fadin, V. A. 
Khoze, A. D. Martin, and A. Chapovsky, Phys. Rev. D 52, 1377 (1995).

[8] A. H. Hoang, Phys. Rev. D 56, 7276 (1997).

[9] J. H. Yoon and C. Y. Wong, Phys. Rev. C 61, 044905 (2000); J. Phys. G: 
Nucl. Part. Phys. 31, 149 (2005).

[10] A. B. Arbuzov, Nuov. Cim. A 107, 1263 (1994).

[11] K. A. Milton and I. L. Solovtsov, Mod. Phys. Lett. A 16, 2213 (2001).

[12] A. A. Logunov and A. N. Tavkhelidze, Nuov. Cim. 29, 380 (1963).

[13] V. G. Kadyshevsky, Nucl. Phys. В 6, 125 (1968).

[14] V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuov. 
Cim. A 55, 233 (1968).

[15] V. I. Savrin and N. B. Skachkov, Lett. Nuov. Cim. 29, 363 (1980).

[16] M. Freeman, M. D. Mateev, and R. M. Mir-Kasimov, Nucl. Phys. В 12, 
197(1969).

213



[17] I. L. Solovtsov, О. P. Solovtsova, Yu. D. Chemichenko, Pisma v Fiz. 
Elem. Chastits At. Yadra 2, 17 (2005) [Sov. J. Phys. Part. Nuclei Lett. 2, 
199 (2005)].

[18] I. L. Solovtsov, Yu. D. Chemichenko, Vestsi Nats. Akad. Navuk Belarusi, 
Ser. fiz.-mat. navuk, 2, 103 (2007); Actual Problems of Microworld 
Physics: Proc, of the Int. School-Seminar, (Gomel, Belarus, July 23- 
Augusto 3, 2007) v. 2 -  Dubna: JINR, 2008, 2, E2-2008-64, p. 33.

[19] I. L. Solovtsov, Yu. D. Chemichenko, Int. Sem. on Contemporary Probl. 
of Elem. Part. Phys., Dedicated to the Memory of I. L. Solovtsov, Dubna, 
Jan. 17-18, 2008: Proc.-Dubna: JINR, 2008, D4-2008-65, p. 73.

[20] K. A. Milton, I. L. Solovtsov, and О. P. Solovtsova, Phys. Rev. D 64, 
016005 (2001).

[21] I. L. Solovtsov, О. P. Solovtsova, Nonlin. Phenom. Complex Syst. 5, 51 
(2002).

[22] K. A. Milton, I. L. Solovtsov, and О. P. Solovtsova, Mod. Phys. Lett. A 
21, 1355 (2006).

[23] K. A. Milton, Int. Sem. on Contemporary Probl. of Elem. Part. Phys., 
Dedicated to the Memory of I. L. Solovtsov, Dubna, Jan. 17-18, 2008: 
Proc.- Dubna: JINR, 2008, D4-2008-65, p. 82.

[24] R. Barbieri, P. Christillin, and E. Remiddi, Phys. Rev. D 8, 2266 (1973).
[25] V. G. Kadyshevsky, M. D. Mateev, R. M. Mir-Kasimov, Yad. Fiz. 11, 692 

(1970) [Sov. J. Nucl. Phys. 11, 388 (1970)].
[26] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Fiz. Elem. 

Chastits At. Yadra 2, 635 (1972) [Sov. J. Part. Nucl. 2, 69 (1972)].
[27] A. P. Martynenko and R. N. Faustov, Teor. Mat. Fiz. 64, 179 (1985).

[28] N. B. Skachkov, I. L. Solovtsov, Theor. Math. Phys. 54, 116 (1983).
[29] W. Lucha and F. F. Schoberl, Phys. Rev. Lett. 64, 2733 (1990); Phys. 

Lett. B. 387, 573 (1996).

214


