Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

УТВЕРЖДАЮ
Первый проректор
ГГТУ им. П.О.Сухого
______О.Д. Асенчик
_______2022

Регистрационный № УД-24-62/уч.

ЯЗЫКИ И СИСТЕМЫ ПРОГРАММИРОВАНИЯ ПРОМЫШЛЕННЫХ РОБОТОВ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-53 01 06 «Промышленные роботы и робототехнические комплексы»

Учебная программа составлена на основе образовательного стандарта высшего образования первой ступени РБ ОСВО 1-53 01 06-2019 специальности 1-53 01 06 «Промышленные роботы и робототехнические комплексы»; учебных планов по специальности 1-53 01 06 «Промышленные роботы и робототехнические комплексы»

№ І 53-1-05/уч. 05.02.2020, І 53-1-07/уч. 05.02.2021.

СОСТАВИТЕЛИ:

Михаилов Михаил Иванович, заведующий кафедрой «Робототехнические системы», учреждения образования «Гомельский государственный технический университет имени П.О. Сухого», доктор технических наук, профессор;

Лепший Александр Парфенович, доцент кафедры «Робототехнические системы» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого», кандидат технических наук, доцент.

РЕЦЕНЗЕНТЫ:

А.А. Кафанов - директор ОАО «Гомельский завод станочных узлов»;

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Робототехнические системы» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 10 от 23.05.2022 г.);

Научно-методическим советом машиностроительного факультета учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

(протокол № $\underline{5}$ от $\underline{20.06.2022}$ г.); УД-РТ-044/уч.

Научно-методическим советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол N_2 от 28.06.2022r.).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа по дисциплине «Языки и системы программирования промышленных роботов» составлена на основе образовательного стандарта высшего образования первой ступени РБ ОСВО 1-53 01 06-2019 специальности 1-53 01 06 «Промышленные роботы и робототехнические комплексы»; учебных планов по специальности 1-53 01 06 «Промышленные роботы и робототехнические комплексы» № I 53-1-05/уч.05.02.2020, I 53-1-07/уч.05.02.2021.

Целью преподавания дисциплины «Языки и системы программирования промышленных роботов» является получение знаний по современным языкам и системам программирования промышленных роботов (ПР), а также информационно-управляющей системе промышленных роботов.

Основная задача учебной дисциплины — изучение наиболее распространенных языков и систем программирования роботов, а также управляющих и контрольно-измерительных подсистем промышленных роботов.

Дисциплина «Языки и системы программирования роботов» базируется на знаниях, полученных при изучении таких дисциплин государственного компонента цикла общепрофессиональных и специальных дисциплин как «Теория механизмов, машин», «Детали и механизмы приборов и машин», «Основы робототехники», «Химические и производственные технологии», «Языки и технологии программирования». В основе дисциплины лежат фундаментальные знания по «Математике», «Физике», «Материаловедению», «Теоретической механике», «Нормированию точности и техническим измерениям». Знания и умения, полученные студентами при изучении данной учебной дисциплины, необходимы для освоения последующих специальных дисциплин и дисциплин специализации, связанных с технологиями и проектированием роботов и робототехнических систем, в том числе: «Эксплуатация робототехнических систем», «Проектирование оборудования роботизированного производства», а также при выполнении студентами курсовых работ (проектов), научно-исследовательских работ, дипломного проекта.

Требования к освоению учебной дисциплины

В результате освоения учебной дисциплины «Языки и системы программирования роботов» студент должен:

знать:

- специальные термины промышленной робототехники;
- принципы работы и устройство систем управления промышленными роботами;
 - основные принципы программирования промышленных роботов;
- современные языки и системы программирования промышленных роботов;
 - информационно-управляющую систему промышленных роботов;

уметь:

- разрабатывать алгоритмы управления промышленными роботами;

- находить самостоятельно интернет-ресурсы и изучать их для начала работы с различными промышленными роботами;
 - разбираться в сторонних программах промышленных роботов;
- выбирать и эффективно использовать языки и действующие системы программирования роботами для реализации производственных процессов;

владеть:

- навыком программирования промышленных роботов на современном языке;
- навыком писать программные модули для реальных роботов с учетом специфики технологических процессов;
- методами выбора информационно-управляющей системы управления роботами по их критериальным характеристикам и технических средств сбора и регистрации информации;

Освоение данной учебной дисциплины обеспечивает формирование у студентов следующей специализированной компетенции: владеть одним из современных языков и систем программирования промышленных роботов, уметь разрабатывать управляющую программу. Вместе с тем развиваются и закрепляются следующие профессиональные компетенции:

- в составе группы специалистов разрабатывать системы управления промышленными роботами;
- участвовать в разработке технологических процессов для автоматизированного производства;
- владеть информацией о современных системах и методах механизации и автоматизации роботизированного производства в машиностроении и применять ее в своей профессиональной деятельности;
- участвовать в создании и совершенствовании современных информационных технологий для машиностроения;
- уметь осуществлять поиск, хранение и анализ информации из различных источников, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий;
- знать устройство (состав) и принцип работы аппаратной и системной программной части компьютера, уметь комплектовать (модернизировать) компьютер и устанавливать программное обеспечение;
- владеть одним из универсальных алгоритмических языков программирования, знать и применять современные технологии программирования;
- работать с научной, нормативно-справочной и специальной литературой;
 - взаимодействовать со специалистами смежных профилей.

Форма получения высшего образования для специальности 1-53 01 06 «Промышленные роботы и робототехнические комплексы» - дневная.

Общее количество часов, отводимое на изучение учебной дисциплины «Языки и системы программирования роботов» — 130 часов.

Трудоёмкость учебной дисциплины, выраженная в зачётных единицах -3.0.

Распределение аудиторного времени по видам занятий, курсам и семестрам

Виды занятий, курсы, семе-	Дневная форма получения высшего об-
стры, и формы текущей атте-	разования
стации	
Курс	3
Семестр	5
Лекции (час.)	17
Лабораторные занятия (час)	34
Практические занятия (час)	17
Всего аудиторных часов	68
Форма текущей аттестации:	
- зачет, семестр	5

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Языки программирования ПР

Тема 1.1. Использование логики предикатов в языках роботов.

Словарь символов. Правила соединения символов. Интерпретации и методы решения логических задач.

Тема 1.2. Современные языки программирования.

Уровни и функции языков программирования роботов. Требования к языкам программирования. Основные особенности языков программирования

Тема 1.3. Основные фреймы роботоориентированных языков.

Анализ шагов разработки программы движения робота. Описание положения и системы координат, траектории движения, очувствления и управления, рабочего органа роботоориентированных языков AL, AML, JAVA, Python, KRL.

Тема 1.4. Характеристики проблемно-ориентированных языков.

Описание задачи на языке высокого уровня. Моделирование рабочего пространства. Синтез программы для управления роботом

Раздел 2. Системы программирования ПР

Тема 2.1. Системы управления промышленными роботами

Классификация систем управления роботами и их взаимосвязь с системами программирования. Конструктивное построение систем управления. Системы позиционного, контурного и комбинированного программного управления, особенности программирования и устройства программирования команд.

Тема 2.2. Системы числового программного управления роботами.

Назначение и применение систем числового программного управления роботами. Системы позиционного и контурного числового программного управления. Программное управление роботами с использованием ЭВМ. Особенности разработки управляющих программ.

Тема 2.3. Речевое управление роботами.

Основные проблемы речевого управления. Методы обработки и распознавания изолированных слов. Способы оптимизации автоматического распознавания слитной речи. Синтезирующие устройства как компонент робототехнических систем речевого управления.

Тема 2.4 Основные методы программирования роботов.

Особенности программируемой информации. Программирование обучением или показ-и- обучение, обучение ведением или сопровождение. Аналитическое и комбинированное программирование.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ (Дневная форма получения образования)

		Количество ауди- торных часов						йй
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР*	Форма контроля занятий
1	2	3	4	5	6	7	8	9
1	Языки программирования ПР		4			7		
1.1	Использование логики предикатов в языках роботов	2						Зачет
1.2	Современные языки программирования	2						Зачет
1.3	Основные фреймы роботоориентированных языков	4	11		8			Зачет, защита ЛР, ПР
1.4	Характеристики проблемно-ориентированных языков	2						Зачет
2	Системы программирования ПР							
2.1	Системы управления про- мышленными роботами	2			10			Зачет, защита ЛР, ПР
2.2	Системы числового программного управления роботами	1						Зачет
2.3	Речевое управление робота-ми	2						Зачет
2.4	Основные методы програм-мирования роботов	2	6		16			Зачет, защита ЛР, ПР

ПРИМЕЧАНИЕ: защита лабораторной работы – ЛР; защита практической работы - ПР

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Архипов, М. В. Промышленные роботы: управление манипуляционными роботами: учебное пособие для среднего профессионального образования / М. В. Архипов, М. В. Вартанов, Р. С. Мищенко. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 170 с. —
- 2. Балабанов, П. В. Программирование робототехнических систем: учебное электронное издание: учебное пособие / П. В. Балабанов. Тамбов: Тамбовский государственный технический университет (ТГТУ), 2018. 82 с.: схем., ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=570263 (дата обращения: 08.07.2022). Библиогр. в кн. ISBN 978-5-8265-1938-7. Текст: электронный.
- 3. Сборка и программирование робота «Robotis Mini» : учебно-методическое пособие : [16+] / сост. И. С. Лузин, З. А. Кононова, С. О. Алтухова ; Липецкий государственный педагогический университет им. П. П. Семенова-Тян-Шанского. Липецк : Липецкий государственный педагогический университет имени П.П. Семенова-Тян-Шанского, 2019. 96 с. : ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php? раде=book&id=611253 (дата обращения: 08.07.2022). Библиогр.: с. 93. Текст : электронный.
- 4. Синица, П. В. Системы управления оборудованием. Практикум: пособие : учебное пособие : [12+] / П. В. Синица. Минск : РИПО, 2017. 84 с.: схем., ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=463681 (дата обращения: 08.07.2022). Библиогр. в кн. ISBN 978-985-503-659-4. Текст : электронный.

Дополнительная литература

- 1. Загорский В,П. Языки и системы программирования промышленных роботов: методическое пособие к лабораторным работам для студентов специальности 1-53 01 06 "Промышленные роботы и робототехнические комплексы" / Владимир Петрович Загорский, Юлия Николаевна Позник; кол. авт. Белорусский национальный технический университет, Кафедра "Робототехнические системы". Минск: БНТУ, 2010. 85 с.
- 2. Зенкевич, С.Л. Управление роботами. Основы управления манипуляционными роботами : учеб. пособие для вузов / С.Л. Зенкевич, А.С. Ющенко. М. : Изд-во МГТУ им. Н.Э. Баумана, 2000. 400 с.
- 3. Назарова А.В. Языки программирования промышленных роботов. Обзор / Международный цент научной и технической информации. М., 1988. 168 с.
- 4. Околов, А.Р. Программное обеспечение промышленных роботов: учебно-методическое пособие для студентов учреждений высшего образова-

ния по специальности 1-53 0101 «Автоматизация технологических процессов и производств», 1-53 01 06 «промышленные роботы и робототехнические комплексы» / А.Р.Околов, Ю.Н.Матрунчик. – Минск: БНТУ. 2021. – 66с.

- 5. Потапова Р.К. Речевое управление роботом./Р.К.Потапова. М. КоопКнига,2012.-328c.
- 6. Серебренный, В.В. Программирование промышленных роботов версии KRC4 на языке KRL: учебное пособие/ В.В.Серебренный, И.Л.Ермолов, Москва: Издательство МГТУ им.Н.Э.Баумана, 2019. 49 с.
- 7. Шахинпур М. Курс робототехники: Пер. с анг. М.- Мир, 1990. 527 с.
- 8. Фу К., Гонсалес., Ли К. Робототехника: Пер. с анг. М.- Мир, 1989. 624 с.
- 9. Юревич, Е.И. Управление роботами и робототехническими системами / Е.И. Юревич, СПб., 2000. 170 с.
- 10. Языки программирования. Python: учебно-методическое пособие для студентов специальности 1-40 01 01 «Программное обеспечение информационных технологий» в 2 ч./ В.В.Иванченко [и др.]. Минск: БНТУ, 2021.-Ч1.-91с.

Методические рекомендации по организации и выполнению самостоятельной работы студентов

При изучении дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- управляемая самостоятельная работа при подготовке сообщений, тематических докладов, презентаций по заданным темам с консультациями преподавателя;
 - подготовка к лабораторным и практическим занятиям;
 - подготовка к сдаче зачета;
 - оформление отчетов по лабораторным и практическим работам;
- проработка тем (вопросов), вынесенных на самостоятельное изучение.

Перечень рекомендуемых средств диагностики

Для оценки достижений студента рекомендуется использовать следующий диагностический инструментарий:

- устный и письменный опрос во время лабораторных и практических занятий;
 - проведение текущих контрольных работ по отдельным темам;
- защита выполненных на лабораторных и практических занятиях индивидуальных заданий;
- защита выполненных в рамках управляемой самостоятельной работы индивидуальных заданий;
- собеседование при проведении индивидуальных и групповых консультаций;
 - выступление студента на конференции по подготовленному реферату;
 - сдача зачета по дисциплине.

Перечень тем лабораторных занятий

- 1. Онлайн-программирование и наладка робота «Ритм-05»(2ч.)
- 2. Онлайн-программирование и наладка робота «РФ-204М»(2ч.)
- 3. Изучение робота HIWIN RA605, его технических возможностей, системы управления и программного обеспечения (4ч.)
- 4. Онлайн-программирование траектории движения манипулятора RA605 (4ч.)
 - 5. Аналитическое программирование робота HIWIN RA605 (4ч.)
- 6. Онлайн-программирование таймеров и счетчиков робота HIWIN RA605 (4ч.)
- 7. Изучение манипуляционного робота ABB IRB-140T, его технических возможностей, системы управления и программного обеспечения (2ч.)
- 8. Онлайн-программирование типов движения, системы координат, рабочего объекта и инструмента робота ABB IRB-140T (4ч.)
- 9. Онлайн-программирование движений робота ABB IRB-140T: задание точек, зоны позиционной точности, скоростного режима прохода (4ч.)
- 10. Онлайн-программирование движений робота ABB IRB-140Т: линейное и круговое перемещение, команды условного перехода, команды смещений (4ч.)

Перечень тем практических занятий

- 1. Офлайн-программирование систем координат: робота HIWIN RA605, положения заготовки и инструментальной системы координат; перемещений рабочей точки инструмента (4ч.)
- 2. Расчет и выбор модели электрического захвата робота HIWIN RA605 по усилию, скорости и точке захвата изделия (2ч.)
- 3. Создание среды виртуального программирования манипуляционного робота ABB IRB-140T (программа RobotStudio) (4ч.)
- 4. Офлайн-программирование контурной задачи манипуляционного робота ABB IRB-140T (4ч.)
- 5. Офлайн-программирование технологического цикла сборки на базе манипуляционного робота ABB IRB-140T (3ч.)

Характеристика рекомендуемых методов и технологий обучения

С целью активизации познавательной деятельности студентов следует широко использовать проблемные методы (проблемное изложение, вариативное изложение, частично-поисковый метод), способствующие более качественному и полному пониманию и усвоению учебного материала. Теоретические лекционные занятия необходимо чередовать с лабораторными занятиями.

При проведении занятий рекомендуется использовать информационные технологии, наглядные пособия, плакаты, макеты. При изложении материала необходимо соблюдать единство терминологии и обозначений в соответствии с действующими стандартами.

Учебно-методическое обеспечение дисциплины должно быть ориентировано на освоение студентами основ инновационных технологий, развитие навыков анализа и самостоятельности в принятии инженерных решений в будущей инженерной деятельности, умение работать с научной и технической литературой.

Перечень контрольных вопросов

- 1. Функциональная схема промышленного робота.
- 2. Назначение информационно-управляющей системы (ИУС) робота.
- 3. Основы построения ИУС.
- 4. Основные уровни языка программирования робота.
- 5. Назначение языка логики предикатов.
- 6. Словарь символов (основные компоненты языка логики предикатов).
- 7. Правила соединения символов: предложения, высказывания и предикаты.
- 8. Правила соединения символов: элементарные и правильно построенные формулы и логические операции.
- 9. Основные причины перехода от метода обучения робота к тестовым языкам программирования.
 - 10. Управление на уровне манипулятора.
 - 11. Управление на уровне объекта.
 - 12. Языки уровня манипулятора.
 - 13. Языки объектного уровня (проблемно-ориентированные).
 - 14. Основные функции языков программирования роботов.
 - 15. Требования к языкам программирования роботов.
 - 16. Современные языки программирования роботов.
 - 17. Назначение и применение языка VAL программирования робота.
 - 18. Назначение и применение языка PLAW программирования робота.
 - 19. Назначение и применение языка РАL программирования робота.
 - 20. Назначение и применение языка Iava программирования робота.
 - 21. Назначение и применение языка Python программирования робота. 22. Назначение и применение языка С и С⁺⁺ программирования робота.
- 23. Основные фреймы систем координат, положения и движения на
- языках программирования AL и AML. 24. Основные фреймы систем координат, положения и движения на языках программирования Python и KRL..
 - 25. Этапы очувствления в программировании робота
- 26. Характеристики проблемно-ориентированных языков программирования.
- 27. Моделирование рабочего пространства при программировании в системе AUTOPASS.
 - 28. Состав системы управления промышленным роботом.
 - 29. Классификация систем управления роботом.
 - 30. Основные признаки систем управления роботом.
- 31. Характеристика и применение позиционных систем управления роботом.
- 32. Характеристика и применение контурных систем управления роботом.
- 33. Характеристика и применение комбинированных систем управления роботом.

- 34. Особенности программирования и устройства программирования команд в различных системах управления роботом.
- 35. Системы числового программного управления роботом и особенности разработки управляющих команд.
 - 36. Основные проблемы речевого управления.
 - 37. Методы обработки и распознавания изолированных слов.
- 38. Способы оптимизации автоматического распознавания слитной речи.
- 39. Синтезирующие устройства как компонент робототехнических систем речевого управления.
 - 40. Программное обеспечения для программирования роботов.
 - 41. Программирование роботов обучением или показ-и- обучение.
- 42. Программирование роботов методом обучение ведением или сопровождение.
 - 43. Аналитическое и комбинированное программирование роботов.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисци-	Название	Предложения об изме-	Решение, принятое кафед-		
пли-ны, с которой	кафедры	нениях в содержании	рой, разработавшей учебную		
требуется согла-		учебной программы по программу (с указанием			
сование		изучаемой дисциплине	ты и номера протокола)		
Математическое		Нет			
моделирование в	PTC	М.И. Михайлов			
САПР					
Расчет и констру-	PTC	Нет			
ирование роботов	PIC	М.И. Михайлов			