


#### Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Промышленная теплоэнергетика и экология»

### ЭНЕРГЕТИЧЕСКИЙ АУДИТ

ПРАКТИКУМ для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика» дневной и заочной форм обучения УДК 620.9:005(075.8) ББК 31.19+65.052.8я73 Э65

Рекомендовано научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол № 10 от 22.062.2021 г.)

Составители: Н. А. Вальченко, Г. А. Рудченко

Рецензенты: зав. сектором энергет. исслед. НИЛ «Энергоэффективность и охрана труда отдела экологической безопасности и энергосбережения на транспорте испытательного центра железнодорожного транспорта» БелГУТа С. Г. Додолев; зав. НИЛ «Энергоаудит и нормирование ТЭР» ГГТУ им. П. О. Сухого С. И. Бахур

Энергетический аудит: практикум для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика» днев. и заоч. форм обучения / Н. А. Вальченко, Г. А. Рудченко. – Гомель: ГГТУ им. П. О. Сухого, 2022. – 22 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Практикум по курсу «Энергетический аудит» позволит студентам закрепить знания по основным разделам дисциплины, а также приобрести навыки применения теоретических знаний при решении задач по энергосбережению на предприятиях различного вида деятельности. Может быть использован студентами при выполнении курсового и дипломного проектирования.

Для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика» дневной и заочной форм обучения.

УДК 620.9:005(075.8) ББК 31.19+65.052.8я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2022

#### Практическое задание 1 Определение энергоэкономических показателей по промышленному предприятию

На основании выданного варианта (см. табл. 1.1) провести расчет энергоэкономических показателей по промышленному предприятию. Результаты расчетов свести в табл. 1.2. Определить структуру потребления топливно-энергетических ресурсов на предприятии (табл. 1.3). Сформулировать выводы.

Предприятие получает со стороны в натуральном виде дизтопливо ( $B_{\rm HZ}$ ), бензин ( $B_{\rm HG}$ ) и газ ( $B_{\rm HF}$ ), а также централизованно электрическую и тепловую энергию. Калорийный коэффициент для пересчета натурального топлива в условное принять: для дизтоплива – 1,45, бензина – 1,49, газа – 1,15.

Таблица 1.1 Исходные данные к заданию 1

| Показатели                          | Знач                 | Темп                  |          |
|-------------------------------------|----------------------|-----------------------|----------|
| Показатели                          | базовый год          | отчетный год          | роста, % |
| 1. Объем выпущенной продукции в     | $21.762 + 5 \cdot i$ | $19\ 025 + 5 \cdot i$ |          |
| сопоставимых ценах, тыс. у.е.       | 21 /02 + 3 - 1       | 19 023 + 3 - 1        |          |
| 2. Объем выпущенной продукции в     | 475 + i              | 386 + i               |          |
| натуральном выражении, тыс. шт.     | 4/3   1              | 360 + t               |          |
| 3. Потребление топливно-            |                      |                       |          |
| энергетических ресурсов по видам:   |                      |                       |          |
| - электрическая энергия, тыс. кВт∙ч | 2784 + i             | $2\ 061 + i$          |          |
| - тепловая энергия, Гкал            | $1\ 178 + i$         | $1\ 340 + i$          |          |
| - дизтопливо, т                     | $50,4+0,2 \cdot i$   | $53,6+0,2 \cdot i$    |          |
| - бензин, т                         | $27,2+0,1 \cdot i$   | $28,0+0,1 \cdot i$    |          |
| - газ, тыс. м <sup>3</sup>          | $586 + 0.5 \cdot i$  | $470 + 0.5 \cdot i$   |          |
| 4. Среднесписочная численность,     | $1\ 371+i$           | $1\ 333 + i$          |          |
| чел.                                | 1 3/1   1            | 1 333   1             |          |

Примечание: і - порядковый номер по журналу группы.

#### Энергоэкономические показатели по предприятию

| Показатели                      | Знач        | Темп         |          |
|---------------------------------|-------------|--------------|----------|
| Показатели                      | базовый год | отчетный год | роста, % |
| 1. Прямые обобщенные            |             |              |          |
| энергозатраты, т у.т.           |             |              |          |
| 2. Целевой показатель по        |             |              |          |
| энергосбережению, %             |             |              |          |
| 3. Энергоемкость продукции,     |             |              |          |
| кг у.т./шт.                     |             |              | >        |
| 4. Электроемкость продукции,    |             |              |          |
| тыс. кВт∙ч /шт.                 |             |              |          |
| 5. Теплоемкость продукции, Гкал |             |              |          |
| /шт.                            |             |              |          |
| 6. Энерговооруженность труда,   |             |              |          |
| т у.т. /чел.                    |             |              |          |
| 7. Электровооруженность труда,  |             |              |          |
| тыс. кВт∙ч /чел.                |             |              |          |
| 8. Коэффициент электрификации,  |             | P            |          |
| тыс. кВт·ч/т у.т.               |             |              |          |
| 9. Теплоэлектрический           |             |              |          |
| коэффициент, Гкал/тыс. кВт·ч    |             |              |          |
| 10. Электротопливный            |             |              |          |
| коэффициент, тыс. кВт·ч/т у.т.  |             |              |          |

# Таблица 1.3 Структура потребления топливно-энергетических ресурсов по

| Показатели               | Структ      | Изменение    |        |
|--------------------------|-------------|--------------|--------|
| показатели               | базовый год | отчетный год | (+; -) |
| 1. Электрическая энергия |             |              |        |
| 2. Тепловая энергия      |             |              |        |
| 3. Дизтопливо            |             |              |        |
| 4. Бензин                |             |              |        |
| 5. Газ                   |             |              |        |
| Итого                    |             |              |        |

предприятию

#### Методические рекомендации по решению задания 1

1. Прямые обобщенные энергозатраты:

$$A_{\text{T} \ni P} = B + K_{\ni} \cdot \ni + K_q \cdot Q, \text{ T y.t.}$$
 (1.1)

где B — количество топлива, поступившего на предприятие со стороны, т у.т.;  $K_{\Im}$ ,  $K_q$  — топливный эквивалент, выражающий количество условного топлива, необходимого для производства и передачи к месту потребления единицы соответственно электрической и тепловой энергии;  $\Im$  — количество электрической энергии, потребленной на предприятии; Q — количество потребленной тепловой энергии.

2. Целевой показатель по энергосбережению:

$$\Pi = \frac{A_{\text{T3P}}^{\text{отч}}}{A_{\text{T3P}}^{\text{6a3}}} \cdot 100 - I_{\Pi\Pi}, \% \tag{1.2}$$

где  $I_{\Pi\Pi}$  – темп роста объема производства продукции в сопоставимых ценах, %.

3. Энергоемкость продукции:

$$A_{\Pi} = \frac{A_{\text{ТЭР}}}{\Pi}$$
, кг у.т./шт, (1.3)

где П – объем продукции, произведенной за анализируемый период, шт.

4. Электроемкость продукции:

$$\Theta_{\Pi} = \frac{\Theta}{\Pi}$$
, тыс. кВт·ч /шт. (1.4)

5. Теплоемкость продукции:

$$Q_{\Pi} = \frac{Q}{\Pi}, \Gamma$$
кал/шт. (1.5)

6. Энерговооруженность труда:

$$A_{\rm M} = \frac{A_{\rm TЭP}}{{\rm U}_{\rm ППП}}$$
, т у.т./чел., (1.6)

где  ${\rm U}_{\Pi\Pi\Pi}$  — среднесписочная численность промышленно-производственного персонала, чел.

7. Коэффициент электрификации:

$$\Theta_{\Im} = \frac{\Im}{A_{T \ni P}}$$
, тыс. кВт·ч /т у.т. (1.7)

8. Теплоэлектрический коэффициент:

$$Q_{\mathfrak{I}} = \frac{Q}{\mathfrak{I}}, \Gamma$$
кал/ тыс. кВт·ч (1.8)

9. Электротопливный коэффициент:

$$\Theta_B = \frac{\Im}{B}$$
, тыс. кВт·ч/т у.т. (1.9)

#### Практическое задание 2

#### Определение норм расхода топливно-энергетических ресурсов

На основе исходных данных (см. табл. 2.1) определить нормы расхода топливно-энергетических ресурсов: 1) индивидуальные технологические нормы для каждого предприятия; 2) групповую технологическую норму; 3) индивидуальные общепроизводственные нормы второго вида; 4) групповую общепроизводственную норму.

По результатам расчетов сделать выводы относительно эффективности технологического процесса на промышленных предприятиях.

Таблица 2.1 Исходные данные к заданию 2

| Показатели                         | Значение                      |                                 |  |  |  |
|------------------------------------|-------------------------------|---------------------------------|--|--|--|
| Показатели                         | базовый год                   | отчетный год                    |  |  |  |
| 1. Расход ТЭР на технологический   |                               |                                 |  |  |  |
| процесс, МДж:                      |                               |                                 |  |  |  |
| – на основной технологический      | $5 \cdot 10^6 + 0.05 \cdot i$ | $2 \cdot 10^7 + 0.05 \cdot i$   |  |  |  |
| процесс;                           |                               | ,                               |  |  |  |
| – на разогрев и пуск оборудования; | $3 \cdot 10^5 + 0.05 \cdot i$ | $5 \cdot 10^5 + 0.05 \cdot i$   |  |  |  |
| – на плановые потери.              | $2 \cdot 10^5 + 0.05 \cdot i$ | $4 \cdot 10^5 + 0.05 \cdot i$   |  |  |  |
| 2. Расход ТЭР на вспомогательные   | $1 \cdot 10^6 + 0.02 \cdot i$ | $0.5 \cdot 10^7 + 0.02 \cdot i$ |  |  |  |
| нужды производства, МДж            | 1 10 + 0,02 1                 | $0.3 \cdot 10 + 0.02 \cdot t$   |  |  |  |
| 3. Объем выпущенной продукции в    | $10\ 000 + 10 \cdot i$        | $20000 + 10 \cdot i$            |  |  |  |
| натуральном выражении, шт.         | 10 000 + 10 · l               | 20000 + 10 · l                  |  |  |  |

Примечание: і - порядковый номер по журналу группы.

#### Методические рекомендации по решению задания 2

1. Индивидуальная технологическая норма:

$$H_{\text{техн}}^{\text{инд}} = \frac{W_{\text{T}}}{\Pi}, M \text{Дж/шт.},$$
 (2.1)

где  $W_{\rm T}$  – расход энергии на технологические цели, МДж; П – объем выпущенной продукции в натуральном выражении, шт.

2. Групповая технологическая норма:

$$H_{\text{техн}}^{\text{гр}} = \sum_{i=1}^{n} H_{\text{техн}}^{\text{инд}} \cdot \delta_{i}, M \text{Дж/шт}.$$
 (2.2)

где  $H_{\text{техн}_i}^{\text{инд}}$  — индивидуальная технологическая норма по *i*-му предприятию, МДж/шт.;  $\sigma_i$  — доля *i*-го предприятия в общем объеме производства, о.е.; n — количество предприятий.

3. Индивидуальная общепроизводственная норма второго вида (заводская):

$$H_{O3}^{uho} = \frac{W_{_{\mathrm{T}}} + W_{_{\mathrm{BC\Pi}}}^{_{3}} + \Delta W^{_{3}}}{\Pi}, \text{ МДж/шт.}$$
 (2.3)

где  $W_{\rm всп}^3$  — общезаводской расход энергии на вспомогательные нужды производства, МДж;  $\Delta W^3$  — потери энергии в общезаводских сетях и преобразовательных установках, МДж.

4. Групповая общепроизводственная норма:

$$H_{O3}^{rp} = \sum_{i=1}^{n} H_{O3_i}^{\text{инд}} \cdot \mathbf{G}_i, \mathbf{M} \mathbf{Д} \mathbf{ж} / \mathbf{ш} \mathbf{T}.$$
 (2.4)

где  $H_{{\rm O3}_i}^{{\rm инд}}$  – индивидуальная общезаводская норма по i-му предприятию, МДж/шт.

#### Практическое задание 3

# Расчет годовых плановых норм расхода электрической энергии для промышленного предприятия

#### Исходные данные

Печь № 1 литейного цеха:

- 1. Ёмкость печи -q = (30 + i), т.
- 2. Продолжительность простоев в течение плавки (завалка, перегрузка электродов, выпуск металла)  $\tau = 1,5$  ч.
  - 3. Продолжительность работы в течение плавки -T = 6.5 ч.
  - 4. Количество шлакообразующих от веса металла  $G_{\text{шл}}$  13 %.
  - 5. Количество руды  $G_p 3$  %.
  - 6. Начальная температура плавления  $t_H = 1450$  °C.
  - 7. Конечная температура плавления  $t_{\kappa}$  = 1600 °C.
- 8. Средневзвешенная мощность тепловых потерь  $\Delta P_{\text{теп.}} = (820 + 4 \cdot i)$ , кВт.
- 9. Средневзвешенная мощность электрических потерь в течение плавки  $\Delta P_{\text{эл.}} = (320 + 8 \cdot i)$ , кВт.

Таблица 3.1

Данные по литейному цеху

| Ofanyina          | Годовая                |    |    |      |    |    |    |    | ЗАРИ. | АНТЬ | Ī  |    |    |    |    |    |    |
|-------------------|------------------------|----|----|------|----|----|----|----|-------|------|----|----|----|----|----|----|----|
| Оборудо-<br>вание | производ.<br>программа | 0  | 1  | 2    | 3  | 4  | 5  | 6  | 7     | 8    | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Печь № 1          | тыс.т                  | 12 | 18 | 19   | 10 | 11 | 12 | 13 | 14    | 16   | 15 | 18 | 16 | 12 | 10 | 15 | 14 |
| Печь № 2          | тыс.т                  | 40 | 42 | 44   | 46 | 48 | 38 | 39 | 41    | 43   | 45 | 40 | 45 | 46 | 48 | 44 | 40 |
| Печь № 3          | тыс.т                  | 52 | 54 | 56   | 48 | 49 | 50 | 51 | 53    | 55   | 57 | 54 | 53 | 52 | 50 | 51 | 51 |
| Печь № 4          | тыс.т                  | 24 | 20 | 22   | 26 | 28 | 21 | 23 | 25    | 27   | 29 | 28 | 21 | 26 | 23 | 27 | 25 |
|                   | Технологи-             |    |    | _ A_ |    |    |    |    |       |      |    |    |    |    |    |    |    |

Технологи-

ческая

норма

расхода э/з

| Печь № 2 | кВт•ч/т | 800 | 750 | 760 | 770 | 780 | 790 | 810 | 820 | 830 | 840 | 780 | 810 | 760 | 820 | 830 | 750 |
|----------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Печь № 3 | кВт•ч/т | 655 | 700 | 695 | 690 | 685 | 680 | 675 | 670 | 665 | 660 | 675 | 670 | 685 | 660 | 670 | 680 |
| Печь № 4 | кВт•ч/т | 900 | 905 | 910 | 915 | 920 | 895 | 890 | 885 | 880 | 875 | 910 | 920 | 890 | 885 | 870 | 905 |

Примечание: і - порядковый номер по журналу группы.

Общецеховые расходы электроэнергии литейного цеха, тыс. кВт·ч:

- 1. Вентиляция и отопление (330+30· *i*).
- 2. Освещение 480.
- 3. Внутрицеховой транспорт  $(340+10 \cdot i)$ .
- 4. Потери в сетях  $(240+15 \cdot i)$ .

Данные по предприятию

| Цехи         | Общепроизв           | одственные        | Годовой план выпуска |                   |  |  |  |
|--------------|----------------------|-------------------|----------------------|-------------------|--|--|--|
| '            | цеховые              | нормы             | продукции            |                   |  |  |  |
| завода       | Ед. изм. Величина    |                   | Ед. изм.             | Величина          |  |  |  |
| Литейный     | кВт∙ч∕т              | рассчитать        | тыс.т                | рассчитать        |  |  |  |
| Кузнечный    | кВт∙ч/т              | $620 + 5 \cdot i$ | тыс.т                | 10,5              |  |  |  |
| Окрасочный   | кВт·ч/м <sup>2</sup> | 2,9               | тыс. м <sup>2</sup>  | $140 + 6 \cdot i$ |  |  |  |
| Прессовый    | кВт·ч/нормо-<br>час  | 5 + 0,2· <i>i</i> | нормо-ч              | 825 000           |  |  |  |
| Механический | кВт·ч/нормо-<br>час  | 8 + 0,1· <i>i</i> | нормо-ч              | 600 000 + 10· i   |  |  |  |
| Сборный      | кВт·ч/нормо-<br>час  | 1,95              | нормо-ч              | 700 000           |  |  |  |

Общезаводские расходы электроэнергии, тыс. кВт-ч:

- 1. Производственные нужды вспомогательных цехов  $(550 + 100 \cdot i)$ .
  - 2. Заводские лаборатории 180.
  - 3. Административные здания 170.
  - 4. Внутризаводской транспорт  $(130 + 75 \cdot i)$ .
  - 5. Наружное освещение  $(110 + 32 \cdot i)$ .
  - 6. Потери в заводских сетях 162.

Годовой валовой выпуск продукции по заводу – 160,5 млн.у.е.

#### Порядок выполнения задания:

- 1. Рассчитать технологическую норму расхода электроэнергии на тонну стали (для печи № 1 литейного цеха).
- 2. Найти общепроизводственную цеховую норму расхода электроэнергии на тонну литья.
- 3. Найти общепроизводственные цеховые нормы остальных цехов (таблица 2).
- 4. Найти общепроизводственные заводские нормы расхода электроэнергии на единицу продукции каждого из цехов.
- 5. Найти общепроизводственную заводскую норму расхода электроэнергии на 1000 руб. валовой продукции.

#### Методические рекомендации по решению задания 3

1. Технологическая норма  $(H_{\text{техн}})$  расхода электроэнергии печи  $N_2$  1 на выплавку тонны стали рассчитывается по формуле:

$$H_{\text{техн}} = 340 + 0.247(t_{\text{K}} - t_{\text{H}}) + 5.4G_{\text{IIII}} + 6.7G_p + \frac{\Delta P_{\text{теп}}}{q} \cdot (T + \tau) + \frac{\Delta P_{\text{эл}}}{q} \cdot T,$$

$$\kappa B_{\text{T}} \cdot \Psi/\text{T}$$
(3.1)

Распределение общезаводских расходов на продукцию цехов осуществить, как 9:5:0,8:1,2:3:4.

2. Технологическая норма расхода электроэнергии на тонну литья по литейному цеху:

$$\mathbf{H}_{\text{Tex}}^{\text{лит}} = \frac{\sum_{i=1}^{k} \mathbf{H}_{i} \cdot \mathbf{\Pi}_{i}}{\sum_{i=1}^{k} \mathbf{\Pi}_{i}}, \, \kappa \mathbf{B} \mathbf{T} \cdot \mathbf{\Psi} / \mathbf{T}, \qquad (3.2)$$

где  $H_i$  – норма расхода электроэнергии на производство продукции по i-й группе оборудования;

 $\Pi_i$  — объем выпускаемо продукции на i-й группе оборудования; k — количество групп.

3. Технологический расход электроэнергии:

$$W_{\text{Tex}}^{\text{II}} = \mathbf{H}_{\text{Tex}} \cdot \mathbf{\Pi} , \, \mathbf{\kappa} \mathbf{B} \mathbf{T} \cdot \mathbf{Y}. \tag{3.3}$$

4. Общепроизводственная цеховая норма расхода электроэнергии (на единицу продукции):

$$H_{\text{on}}^{\text{II}} = \frac{W_{\text{Tex}}^{\text{II}} + W_{\text{BCII}}^{\text{II}} + \mathcal{I}W^{\text{II}}}{\Pi_{\text{II}}}, \text{ kBt·ч/t},$$
 (3.4)

где  $W_{\rm rex}^{\rm u}$  — расход электроэнергии на технологические нужды цеха, кВт·ч;

 $W_{\rm BCH}^{\rm u}$  — расход электроэнергии на вспомогательные цеховые нужды, к ${
m B}{
m T}\cdot{
m u}$ ;

 $\Delta W^{\rm u}$  — потери электроэнергии во внутрицеховых сетях и преобразователях, кВт·ч;

 $\Pi_{_{\rm II}}$  – выпуск продукции цехом.

5. Общепроизводственная заводская норма расхода электроэнергии:

$$H_{03} = \frac{\sum W_{II} + W_{BCII}^3 + \Delta W^3}{\Pi_3}, \, \kappa B_{T} \cdot \Psi/T,$$
 (3.5)

где  $W_{\rm всп}^{_3}$  — расход электроэнергии на заводские вспомогательные нужды (включая общепроизводственные расходы электроэнергии на вспомогательные цеха), к ${\rm Bt}\cdot{\rm q}$ ;

 $\Delta W^3$  — потери электроэнергии в заводских сетях и трансформаторах, кВт·ч;

 $\Pi_{_{3}}$  – объем выпуска продукции по заводу.

#### Практическое задание 4

# Определение нормы расхода тепловой энергии на отопление, вентиляцию и горячее водоснабжение

На основании исходных данных провести расчет норм расхода тепла на отопление, вентиляцию и горячее водоснабжение (см. табл. 4.1).

Таблица 4.1 Исходные данные к заданию 4

| Наименование цехов    | Объем<br>помещений,               | Температура                         | Характеристики<br>зданий, ккал/м <sup>3</sup> ·ч·°С |             |  |
|-----------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------|-------------|--|
| ттаимснование целов   | помещении,<br>тыс. м <sup>3</sup> | внутри<br>помещения, <sup>0</sup> С | $q_0$                                               | $q_{\rm B}$ |  |
| Кузнечно-прессовый    | 45 + 5· i                         | 14                                  | 0,2                                                 | 0,4         |  |
| Литейный              | 32 - 2· i                         | 14                                  | 0,3                                                 | 0,9         |  |
| Механический          | 56 + 4· i                         | 16                                  | 0,4                                                 | 0,15        |  |
| Термический           | 30 - 1,5· <i>i</i>                | 14                                  | 0,3                                                 | 0,55        |  |
| Сборочный             | 35 - 3· i                         | 16                                  | 0,4                                                 | 0,2         |  |
| Инструментальный      | 20 - 1· i                         | 16                                  | 0,45                                                | 0,1         |  |
| Ремонтно-механический | 20 - 1· i                         | 16                                  | 0,5                                                 | 0,15        |  |
| Компрессорная         | 4 - 0,3· i                        | 16                                  | 0,6                                                 | -           |  |
| Заводоуправление      | $10 + 1 \cdot i$                  | 18                                  | 0,3                                                 | 0,1         |  |
| Столовая              | $5 + 0.5 \cdot i$                 | 18                                  | 0,33                                                | 0,12        |  |

Примечание: і - порядковый номер в списке группы.

Численность работников предприятия — 2200 человек, в т.ч. рабочих — 1700 человек. Из общего числа рабочих 25 % работают в литейном и термическом цехах. Количество душевых сеток на предприятии принять из расчета  $n_{\rm душ}$ =0,1·Ч, где Ч — численность рабочих, чел.

Расчеты свести в таблицу 4.2.

 Таблица 4.2

 Расчет нормы тепловой энергии на отопление и вентиляцию

#### Расход тепловой Индивидуальная Температу-Работа на энергии норма расхода Объем Характеристики зданий, $\kappa \kappa a \pi / \text{м}^3 \cdot \text{ч} \cdot ^{\text{o}} C$ ра внутри обогрев тепловой энергии на помещений, Наименование цехов помещения, отоплена отопление и здания, $\mathbf{M}^{3}$ $^{0}C$ $M^3$ ·cyT·°C вентиляцию, ние Мкал/тыс.м<sup>3</sup>·сут. °С зданий, Гкал/год VW $H_{ot}$ $Q_{o\delta}$ $q_{\rm o}$ $q_{\scriptscriptstyle \mathrm{B}}$ $t_{\scriptscriptstyle \mathrm{BH}}$ Кузнечно-прессовый Литейный Механический Термический Сборочный Инструментальный Ремонтно-механический Компрессорная Заводоуправление Столовая Итого: X X X X

#### Методические рекомендации по решению задания 4

Расход тепловой энергии на отопление и вентиляцию помещений

Расход тепловой энергии на отопление и вентиляцию зданий и сооружений (обогрев) определяется, исходя из индивидуальных отраслевых норм расхода тепловой энергии на отопление и на вентиляцию зданий, работы обогрева каждого отдельного здания, а также средней температуры наружного воздуха за отопительный период и продолжительности работы отопления за год.

1. Расход тепловой энергии на отопление зданий определяется по формуле:

$$Q_{\text{об}} = q_0 \cdot W \cdot 10^{-6}, \Gamma \text{кал/год}, \tag{4.1}$$

где  $q_o$  – удельная тепловая характеристика зданий, ккал/м<sup>3</sup>·сут·°С;

W – работа на обогрев здания, м<sup>3</sup>·сут·°С.

Работа на обогрев здания определяется по формуле:

$$W = V(t_{\rm BH} - t_{\rm cp}) \cdot n \,,\, \text{M}^3 \cdot \text{cyt} \cdot {}^{\circ}\text{C}, \tag{4.2}$$

где V – наружный строительный объем здания, м<sup>3</sup>;

 $t_{\text{вн}}$  – нормируемая температура воздуха внутри помещения, °C;

 $t_{\rm cp}$  – средняя температура наружного воздуха за отопительный период, °C;

- n продолжительность работы отопления, сут.
- 2. Индивидуальная норма расхода тепловой энергии на обогрев i-го здания равна:

$$H_{of} = Q_{of} \cdot 10^3 / W_i$$
, Мкал/тыс.м<sup>3</sup>·сут.°С. (4.3)

3. Средневзвешенная норма расхода на обогрев всех зданий рассчитывается по формуле:

$$H_{ob} = \sum Q_{ob} \cdot 10^3 / \sum W_i$$
, Мкал/тыс. м<sup>3</sup>·сут. °C. (4.4)

## Определение нормы расхода тепловой энергии на горячее волоснабжение

1. Расход тепловой энергии на нужды горячего водоснабжения определяется по формуле:

$$Q_{\Gamma BC} = Q_{XO3} + Q_{\Pi Y III}$$
, Гкал/год, (4.5)

где  $Q_{\text{XO3}}$  – расход тепла на хозяйственно-бытовые нужды, Гкал;  $Q_{\text{ДУШ}}$  – расход тепла на душевые, Гкал.

2. Суточный расход тепла на хозяйственно-бытовые нужды рассчитывается по формуле:

$$Q_{\rm XO3} = q \cdot n \cdot c(t_{\Gamma} - t_{\rm X}), \Gamma$$
кал/год, (4.6)

где q — норма расхода горячей воды на одного работающего, л/сут·чел;

n – количество работающих в смену, чел.;

с – теплоемкость воды, ккал/кг $^{\circ}$ С (1 ккал/кг $^{\circ}$ С);

 $t_{\Gamma}$  – температура горячей воды, °C;

 $t_{\rm x}$  – температура холодной воды, °С.

В расчетах принять, что норма расхода горячей воды составляет 20 л/сут на одного рабочего в помещениях с тепловыделением 20 ккал/м³ и более (термический цех), 11 л/сут на одного рабочего в помещениях с тепловыделением менее 20 ккал/м³ и 5 л/сут на одного административного работника и ИТР ( $q_1 = 20$  л/сут;  $q_2 = 11$  л/сут;  $q_3 = 5$  л/сут). Теплоемкость воды составляет с = 1 ккал/кг·°С. Расчетную температуру горячей воды в водоразборных кранах (душевых сетках) принять равной  $t_{\rm r} = 55$  °С. Температура холодной воды  $t_{\rm x} = 5$  °С зимой и 15 °С летом.

3. Суточный расход тепла на душевые определяется по формуле:

$$Q_{\text{ЛУШ}} = q_{\text{ЛУШ}} \cdot n_{\text{ЛУШ}} \cdot c(t_{\Gamma} - t_{X}), \Gamma$$
кал/год, (4.7)

где  $q_{\text{ДУШ}}$  – норма расхода воды на одну душевую сетку, л/сут (270 л/сут);

 $n_{\rm ЛУШ}$  — количество душевых сеток.

4. Норма расхода тепловой энергии на горячее водоснабжение рассчитывается по формуле:

$$H_{\Gamma BC} = Q_{\Gamma BC} / \Psi$$
, Мкал/чел., (4.8)

где Ч — численность работников предприятия, чел. Цех работает 252 дня: 119 дней зимой и 133 дня летом.

#### Практическое задание 5

# **Технико-экономическое обоснование установки** турбогенератора малой мощности

Оценить экономическую эффективность установки в котельной турбоагрегата малой мощности. Исходные данные по вариантам приведены в таблице 5.1.

Таблица 5.1 Исходные данные к заданию 5

| Средне-<br>часовой<br>расход<br>пара на<br>котель-<br>ной<br>$D_{\rm час}$ , т/ч | Число часов использо- вания установ- ленной мощности турбо- агрегата $T_{ycr}$ , ч/год | Установ-<br>ленная<br>мощность<br>турбоаг-<br>регата<br>$N_{ m ycr}$ , кВт | КПД<br>котельной<br>нетто<br>η <sup>нетто</sup> , о.е. | КПД турбоагрегата<br>η <sub>тг</sub> , о.е.<br>(марка<br>турбоагрегата) | Удельные<br>капитало-<br>вложения в<br>турбоагрегат<br>$k_{ m y,d}$ , y.e./кВт |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 21                                                                               | 3000                                                                                   | 500                                                                        | 0,9                                                    | 0,86<br>(TΓ-0,5A/0,4 P13/3,7)                                           | 220                                                                            |

#### Методические рекомендации по решению задания 5

1. Определяется количество теплоты на выработку электроэнергии на выбранном турбоагрегате за год:

$$Q_{\mathfrak{I}} = N_{\text{ycr}} \cdot T_{\text{ycr}} \cdot k_{\mathfrak{I}} \cdot 10^{-3} / 3_{\text{тг}}, \Gamma \text{кал},$$
 (5.1)

где  $N_{\text{уст.}}$  – установленная мощность турбогенератора, кВт;  $T_{\text{уст.}}$  – число часов использования установленной мощности, ч;  $k_{\text{Э}}$  – коэффициент перевода электрической энергии в тепловую (0,86);  $\eta_{\text{тг}}$  – коэффициент полезного действия турбоагрегата, о.е.

2. Рассчитывается расход условного топлива на выработку электроэнергии на выбранном турбоагрегате за год:

$$B_{99} = Q_{99} / (Q_{\rm H}^{\rm p} \cdot \eta_{\rm K}^{\rm Hetto} \cdot \eta_{\rm TD}), \text{ T y.t.},$$
 (5.2)

где  $Q_{\rm H}^{\rm p}$  – низшая теплотворная способность условного топлива, равная 7000 ккал/кг;  $\eta_{\kappa}^{\text{нетто}}$  – коэффициент полезного действия котельной нетто после установки турбоагрегата с учетом роста среднечасовой паровой нагрузки, о.е.;  $\eta_{\text{тр}}$  – коэффициент полезного действия транспорта пара, o.e. (при нормальном состоянии теплоизоляции транспорта пара составляет 0,98 КПД котельной и 0,96 при установке турбогенератора в отдельностоящем здании с прокладкой наружных паропроводов).

3. Определяется количество выработанной электроэнергии турбоагрегатом за год:

$$\Theta_{\text{выр}} = N_{\text{уст}} \cdot T_{\text{уст}}, \, \text{кВт-ч},$$
 (5.3)

где  $N_{\text{уст.}}$  — установленная мощность турбоагрегата, кВт;  $T_{\text{уст.}}$  — число часов использования установленной мощности, час.

4. Определяется количество отпущенной электроэнергии от выбранного турбоагрегата:

$$\Theta_{\text{отп}}^{\text{тг}} = \Theta_{\text{выр}} \cdot (1 - \alpha_{\text{сн}}^{99} / 100), \text{ кВт·ч},$$
 (5.4)

где  $\alpha_{\text{сн}}^{99}$  — коэффициент потребления электроэнергии на собственные нужды турбоагрегата (на работу насосов техводоснабжения, пускового маслонасоса и др. электрического оборудования), в зависимости от выбранной схемы технического водоснабжения составляет ориентировочно: при включении в схему технического водоснабжения предприятия — 0,5-1%, при индивидуальной схеме технического водоснабжения — 3-8%.

5. Необходимое количество отпущенной электроэнергии с шин электростанций ГПО «Белэнерго» с учетом потерь в электрических сетях на транспорт электроэнергии до вводов токоприемников предприятия составляет:

$$\Theta_{\text{orn}}^{\text{sc}} = \Theta_{\text{orn}}^{\text{Tr}} \cdot (1 - k_{\text{not}} / 100), \, \kappa \text{BT-ч},$$
 (5.5)

- где  $Э_{\text{отп}}^{\text{тг}}$  отпущенная с шин турбоагрегатом и потребленная предприятием электроэнергия, кВт·ч;  $k_{\text{пот}}$  коэффициент потерь в электрических сетях на транспорт электроэнергии в системе ГПО «Белэнерго», %.
- 6. Определение экономии топлива от установки выбранного турбоагрегата на котельной предприятия:

$$\Delta B^{\text{TT}} = \Im_{\text{OTH}}^{\text{3c}} \cdot b_{\text{39}}^{\text{3aM}} \cdot 10^{-6} - B_{\text{39}}, \text{ T y.t.}, \tag{5.6}$$

- где  $b_{\scriptscriptstyle 39}^{\scriptscriptstyle 38M}$  удельный расход топлива на отпуск электроэнергии, принимается равным фактическому расходу топлива на замыкающей станции в энергосистеме (Лукомльской ГРЭС) за год, предшествующий составлению расчета, г у.т./кВт·ч;  $B_{\scriptscriptstyle 39}$  годовой расход топлива на выработку электроэнергии выбранным турбоагрегатом, т у.т.
- 7. Определение укрупненных капиталовложений в установку турбоагрегата малой мощности на котельных предприятий с созданием малых ТЭЦ проводится по следующим статьям:
- стоимость выбранного турбоагрегата ( $C_{\rm TF}$ ) определяется по результатам тендера;
- стоимость электротехнических устройств ( $C_{\text{эту}}$ ) составляет ориентировочно 10-15 % от стоимости турбоагрегата;
- стоимость тепломеханической части ( $C_{\text{тмч}}$ ) 15-20% от стоимости турбоагрегата (паропроводы, трубопроводы технической воды и т.д.);
- стоимость строительно-монтажных работ ( $C_{\text{смр}}$ ) в зависимости от расположения турбоагрегата: в котельной 15-20% от стоимости оборудования; в отдельно стоящем строении 20-30% от стоимости оборудования;
- стоимость проектно-изыскательных работ ( $C_{\text{пир}}$ ) 5-10% от стоимости строительно-монтажных работ;
- стоимость пуско-наладочных работ ( $C_{\text{пнр}}$ ) 3-5% от стоимости оборудования.

Стоимость оборудования:

$$C_{06} = C_{TF} + (0.1 \div 0.15) \cdot C_{TF} + (0.15 \div 0.2) \cdot C_{TF}, \text{ py6}.$$
 (5.7)

Таким образом, капиталовложения в мероприятие составят:

$$K_{\text{\tiny TT}} = C_{\text{of}} + (0.05 \div 0.1) \cdot C_{\text{\tiny CMP}} + (0.15 \div 0.3) \cdot C_{\text{\tiny of}} + (0.03 \div 0.05) \cdot C_{\text{\tiny of}}, \text{ pyf.}$$

$$(5.8)$$

Результаты расчетов свести в табл. 5.2.

Таблица 5.2 Капиталовложения в мероприятие

| Показатели                             | Значение, руб. |
|----------------------------------------|----------------|
| Стоимость выбранного турбоагрегата     |                |
| Стоимость электротехнических устройств |                |
| Стоимость тепломеханической части      |                |
| Итого стоимость оборудования           |                |
| Стоимость строительно-монтажных работ  |                |
| Стоимость проектно-изыскательных работ |                |
| Стоимость пуско-наладочных работ       |                |
| Всего                                  |                |

#### 8. Определяется простой срок окупаемости мероприятия:

$$T_{\text{ok}} = \frac{K_{\text{TT}}}{\Delta B^{\text{TT}} \cdot C_{\text{TOHII}}}, \text{ net},$$
 (5.9)

где  $K_{\text{тг}}$  — капиталовложения в мероприятие, руб.;  $\Delta B_{\text{тг}}$  — экономия топлива от внедрения мероприятия, т у.т.;  $C_{\text{топл}}$  — стоимость 1 т у.т. (уточняется на момент составления расчета), руб.

#### ЛИТЕРАТУРА

- 1. Андрижиевский, А. А. Энергосбережение и энергетический менеджмент: учеб. пособие / А.А. Андрижеевский, В.И. Володин. Минск: Вышэйшая школа, 2005. 294 с.
- 2. Врублевский, Б. И. Основы энергосбережения: практикум / Б. И. Врублевский, С. Н. Лебедева, А. Б. Невзорова. Гомель: Белкоопсоюз, Белорус. торг.-экон. ун-т потреб. кооперации, 2011. 92 с.
- 3. Котова, С. Н. Организация и планирование производства. Управление предприятием : лабораторный практикум по одноименному курсу для студентов специальности 1-43 01 03 «Электроснабжение» дневной формы обучения / С. Н. Котова, О. А. Полозова, Г. А. Прокопчик. Гомель : ГГТУ им. П. О. Сухого, 2009. 62 с.
- 4. Методические рекомендации по составлению техникоэкономических обоснований для энергосберегающих мероприятий:
  утв. Департаментом по энергоэффективности Государственного
  комитета по стандартизации Респ. Беларусь, 11 нояб. 2020 г.
  [Электронный ресурс] // Департамент по энергоэффективности
  Государственного комитета по стандартизации Респ. Беларусь. –
  Минск. Режим доступа:
  http://energoeffekt.gov.by/programs/forming/20201118\_tepem. Дата
  доступа: 17.02.2021.

### Содержание

| Практическое задание 1 | 3  |
|------------------------|----|
| Практическое задание 2 | 7  |
| Практическое задание 3 | 9  |
| Практическое задание 4 | 13 |
| Практическое задание 5 |    |
| Литература             |    |

### ЭНЕРГЕТИЧЕСКИЙ АУДИТ

### Практикум для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика» дневной и заочной форм обучения

Составители: **Вальченко** Николай Адамович **Рудченко** Галина Анатольевна

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 03.11.22.

Per. № 47E. http://www.gstu.by