оптимальное проектирование прессованных тормозных дисков

В.М.Ткачев*, А.И.Столяров*, В.П.Сергиенко**

*Гомельский политехнический институт им. П.О.Сухого (Гомель) Институт механики металлополимерных систем им. В.А.Белого АНБ (Гомель)

Во фрикционных композитах в качестве основного наполнителя, как правило, использовался асбест, относящийся к канцерогенным веществам и запрещенный в странах Запада к применению. В последние годы в ИММС им. В.А.Белого АНБ разработан ряд полимерных композиций фрикционного назначения, используемых при производстве путем прессования безасбестовых изделий для транспортных машин и технологического оборудования. В качестве наполнителей и структурных модификаторов разрабатываемых композитов используются продукты, имеющие значительные сырьевые ресурсы в Беларуси.

Один из таких материалов разработан для производства тормозных дисков к изделиям Минского тракторного завода. Тормозной диск получают путем прямого прессования накладок на металлической основе в пресс-форме, что существенно снижает себестоимость изделия, трудоемкость изготовления и повышает надежность работы по сравнению с использованием технологии клепки и наклеивания. Основным недостатком при изготовлении тормозных дисков методом прямого прессования являются значительные остаточные напряжения в материале, приводящие к появлению трещин и нарушению сплошности полимерного композита. Причины этого явления очевидны - различие механических и теплофизических характеристик композита и металлической арматуры. Например, коэффициент линейного расширения используемого композита составляет 2,74·10⁻⁵ 1/°С против 1,25·10⁻⁵ 1/°С для стали.

Решение проблемы о механической совместимости в общем случае в системе металл полимер может рассматриваться как совокупность материаловедческой, технологической и конструкторской задач.

В рамках материаловедческой задачи уровень дефектности может быть снижен путем введения пластификатора. В качестве последнего в основном используют каучук. Однако он не производится в Беларуси и его применение значительно повышает себестоимость изделий. Прочность композита может быть увеличена и путем применения наполнителей с более высокими прочностными свойствами. Так, вместо традиционно используемой латунной стружки наиболее перспективным является применение аморфных стальных волокон, обладающих повышенной твердостью и прочностью. Технология получения таких волокон разработана в ГПИ им. П.О.Сухого.

В рамках конструкторской и технологической задач проведено исследование напряженно-деформированного состояния диска на стадии его изготовления с учетом температурного влияния, а также на основе знаний физико-механических, теплофизических, и химических

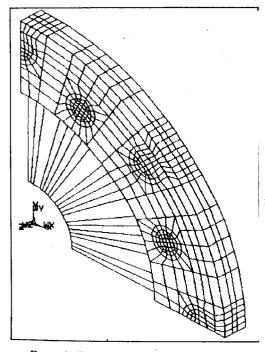


Рис. 1. Расчетная модель диска.

свойств полимерного композита и металлической основы сделана попытка оптимизации конструкции (конструкторская задача). Решение задачи с учетом температурного влияния позволяет определить оптимальные режимы прессования и охлаждения (технологическая задача).

Расчет полей распределения напряжений, деформаций и температур проводился численно с использованием метода конечных элементов. Расчетная модель диска показана на Рис.1. Из соображений симметрии формы и нагружения рассматривается 1/4 часть диска. Для получения оптимальной конструкции в качестве параметров модели выбраны управляющие воздействия, к числу которых относятся различные конструктивные поправки (например, отверстия в металлической основе, изменение ее толщины и т.д.), а также температура прессования и скорость охлаждения. Критерий оптимизации - минимизация остаточных напряжений. Как показал расчет, зоной повышенной концентрации напряжений являются прорези и отверстия в металлической основе, служащие для повышения надежности фиксации на ней фрикционных накладок. На Рис. 2 показано распределение эквивалентных напряжений на наружной и внутренней поверхностях накладки в виде изолиний. Результаты расчета подтверждаются и экспериментально. После принудительного разрушения треснувших под действием остаточных напряжений накладок выявлено, что трешина исходит практически во всех случаях от зоны максимальных напряжений.

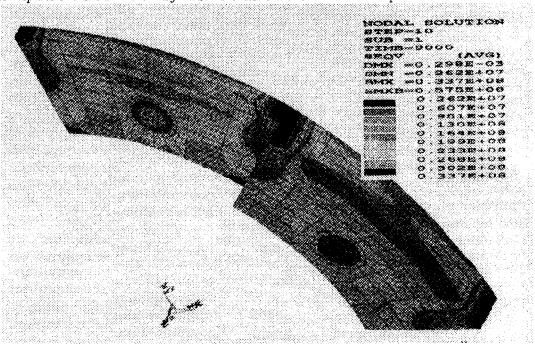


Рис. 2. Распределение эквивалентных напряжений на наружной и внутренней поверхностях диска в МПа.

В условиях производства делались попытки снижения уровня дефектности изделий путем увеличения числа отверстий в металлической основе. Однако, такие меры могут привести, естественно, только к увеличению числа возможных зон концентрации напряжений и появления трещин.

По результатам расчета в качестве оптимальной может быть принята конструкция с металлической основой без отверстий, но с рифлениями на ее торцевой поверхности. Прочность соединения металл - полимер при этом обеспечивается достаточными адгезионными свойствами применяемого в композите связующего.

ЛИТЕРАТУРА

- Fade in wear characteristics of glass-reinforced phenoic friction material. P.Gopel, L.R.Dharani and Frank D.Blum. Wear, 174 (1994) 119-127.
- Load, speed and temperature sensivities of a carbon-fiber-reinforced friction material P.Gopel, L.R.Dharani and Frank D.Blum. Wear, 181-183 (1995) 913-921.
- 3. Adhesion and Adhesives Science and Technology, A.J.Kinloch, 1987. Charman and Hall Ltd., London.

ВЛИЯНИЕ КОНТАКТНОЙ ЖЕСТКОСТИ ЗАЦЕПЛЕНИЯ НА МЕХАНИЗМ ИЗНАШИВАНИЯ ПРИВОДНЫХ РОЛИКОВЫХ ЦЕПЕЙ.

С.С.Слуцкий

Гомельский политехнический институт им. П.О.Сухого (Гомель)

Одной из особенностей трения элементов цепной передачи является дискретность и динамичность механического контакта сопряженных поверхностей вследствие «гранености» звездочек и разноразмерности шагов звеньев цепи. Поэтому, несмотря на высокий коэффициент запаса прочности приводных роликовых цепей (n>10) и применение прогрессивных технологий их производства, лимитирующим звеном по долговечности в цепной передаче является сама цепь, которая в два три раза ниже нормативного срока службы машин на которых они установлены. Последнее объясняется неравномерностью движения ведущей и ведомой систем, присущих цепной передаче (особенно в мобильных машинах), резким повышением динамических нагрузок, приводящих к возникновению вибраций и увеличению удельных давлений на сопряженных поверхностях контактирующих деталей в момент на-